MODÈLE ANALYTIQUE POUR BLOQUER LE RAYONNEMENT ULTRAVIOLET SUR UN MODULE PHOTOVOLTAÏQUE

Auteurs

  • YUSRA TAHIR Hamdard Institute of Engineering and Technology, Faculty of Engineering Sciences and Technology, Hamdard University, Karachi Author
  • M. FAISAL KHAN Hamdard Institute of Engineering and Technology, Faculty of Engineering Sciences and Technology, Hamdard University, Karachi Author
  • M. FAIZAN Hamdard Institute of Engineering and Technology, Faculty of Engineering Sciences and Technology, Hamdard University, Karachi Author
  • ABDOUL HAMEED MEMON Hamdard Institute of Engineering and Technology, Faculty of Engineering Sciences and Technology, Hamdard University, Karachi Author

Mots-clés :

Effet photovoltaïque, Rayonnement ultraviolet, Absorbeur d'ultraviolets, Encapsulant, Température de la cellule

Résumé

Un système photovoltaïque (PV) utilise la lumière du soleil pour produire de l'énergie électrique. La partie ultraviolette (UV) de la lumière solaire contient une grande quantité d'énergie qui entraîne finalement une diminution de la durée de vie du module PV en raison de la dégradation de l'encapsulant, augmente la température de la cellule et réduit finalement l'efficacité du module PV. Cette recherche propose un modèle/cadre analytique pour réduire les effets néfastes du rayonnement UV en bloquant son incidence sur les modules PV à l'aide de filtres UV. Pour la vérification du modèle, des résultats expérimentaux sont également inclus dans cet article. Dans les expériences, les modules PV sont protégés des rayons UV en plaçant une feuille acrylique transparente dessus, ainsi qu'une couche de vernis disponible dans le commerce. De cette façon, le module PV ne reçoit que les rayonnements visibles et IR. Les résultats montrent une réduction de 4,6 % de la température des cellules en bloquant les rayonnements UV. Ainsi, en raison de cette moindre exposition aux rayonnements UV sur le module PV, la durée de vie du panneau est augmentée ainsi que la réduction de la température de chaque cellule. Ce travail de recherche est très utile pour augmenter la durée de vie et les performances des modules PV.

Références

(1) H. Deboucha, S.L. Belaid, Improved incremental conductance maximum power point tracking algorithm using fuzzy logic controller for photovoltaic system, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 62, 4, 381–387 (2017).

(2) R. Yumurtaci, Role of energy management in hybrid renewable energy systems: case study-based analysis considering varying seasonal conditions, Turk. J. Elec. Eng.& Comp. Sci., 21, 4, pp. 1077 – 1091 (2013).

(3) H. Hassanzadehfard, S.M. Moghaddas-Tafreshi, S.M. Hakimi, Optimization of grid-connected microgrid consisting of PV/FC/UC with considered frequency control, Turk J ElecEng& Comp Sci, 23, 1, pp. 1–16 (2015).

(4) B. Balasubramanian, A. MohdAriffin, K. Tze Mei, Implications of ground based and satellite-derived measurements on techno-economic evaluation of the photovoltaic grid-connected system in Kajang, Malaysia, Rev. Roum. Sci. Techn.–Électrotechn. etÉnerg., 66, 1, 27–32 (2021).

(5) M O. Benaissa, S. Hadjeri, S. A. Zidi, Y. I. D. Kobibi, Photovoltaic solar farm with high dynamic performance artificial intelligence based on maximum power point tracking working as STATCOM, Rev. Roum. Sci. Techn.–Électrotechn. etÉnerg., 63, 2, pp. 156–161 (2018).

(6) F. Hamidia, A. Abbadi, A. Tlemcani, Improved pumping system supplied by double photovoltaic panel, Rev. Roum. Sci. Techn.–Électrotechn. Et Énerg., 64, 1, 87–93, 2019.

(7) T. Markvart, Solar Electricity, John Wiley & Sons, Chichester – New York – Brisbane – Toronto – Singapore, p. 42,0 (1994).

(8) A. Hemani, D. Benmoussa, H. Khachab, A. Helmaoui, effect of temperature on the algaas/gaas tandem solar cell for concentrator photovoltaic performances, Journal of Nano- and Electronic Physics, 8,1, pp. 01015-1-01015-4 (2016).

(9) H. Wang, A. Wang, H. Yang, J. Zhang, J. Huang, Performance degradation of crystalline silicon solar module in various ultraviolet radiation area, IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland USA (2016).

(10) G. Perrakis, et al., Ultraviolet radiation impact on the efficiency of commercial crystalline silicon-based photovoltaics: a theoretical thermal-electrical study in realistic device architectures, OSA CONTINUUM, 3, 6, pp. 1436–1444 (2020).

(11) J. Correa-Puerta, et al.., Comparing the effects of ultraviolet radiation on four different encapsulants for photovoltaic applications in the Atacama Desert, Solar Energy, 228, pp. 625–635 (2021).

(12) P. Arjyadhara, S. M. Ali, J.Chitralekha, Analysis of Solar PV cell performance with changing irradiance and temperature, Int. J. Eng. Comput. Sci., 2, pp. 214–220 (2013).

(13) K.A. Moharram, M. S. Abd-Elhady, H. A. Kandil, H. El-Sherif, Enhancing the performance of photovoltaic panels by water cooling, Ain Shams Engineering Journal, 4, 4, 869-877 (2013).

(14) M. Sadok, B. Benyoucef, M. Benmedjahed, Assessment of PV modules degradation based on performances and visual inspection in Algerian Sahara, Int. J. of renewable energy research, 6, 1, pp. 106-116 (2016).

(15) W.T. Beauchamp, T.T. Hart, UV / IR reflecting solar cell cover, European Patent Office, Publication no. 0632507A2, Date of filing 12.05.1994.

(16) M.D. Kempe, P. Thapa, Encapsulant Materials and Associated Devices, US Patent Office, Publication no. US 2009/0032101 A1, Date of filing: 02.06.2008.

(17) M.D. Kempe, F.G.J. Jorgensen, K.M. Terwilliger, T.J. McMahon, C.E. Kennedy, T.T. Borek, Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices, Solar Energy Materials & Solar Cells, 91, 4, 315–329 (2007).

(18) F. Liu, L. Jiang, S. Yang, Ultra-violet degradation behavior of polymeric back sheets for photovoltaic modules, Solar Energy, 108, 88–100 (2014).

(19) W. H. Holley, S. C. Agro, J. P. Galica, L. A. Thoma, R. S. Yorgensen, M. Ezrin, P. Klemchuk, G. Lavigne, H. Thomas, Investigation into the causes of browning in EVA encapsulated flat-plate PV modules, IEEE 1st World Conference on Photovoltaic Energy Conversion–WCPEC, Waikoloa, HI, USA (1994).

(20) F.J. Pern, S.H. Glick, Improved photostability of NREL-developed EVA pottant formulations for PV module encapsulation, 26th IEEE Photovoltaic Specialists Conference, pp. 1089–1092, Anaheim USA (1997).

(21) Photovoltaics—The Power of Choice, National Photovoltaic Program Plan for 1996–2000, US Department of Energy (1996).

(22) D.L. King, M.A. Quintana, J.A. Kratochvil, D.E. Ellibee, B.R. Hansen, Photovoltaic module performance and durability following long term field exposure, Prog. Photovoltaic Res. Appl., 8, 2, pp. 241–256 (2000).

(23) Y. Tahir, M.F. Khan, A.H. Memon, A simple approach to block incidence of Ultraviolet radiations on PV Module, IEEE 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), Karachi, Pakistan, pp. 1–3 (2018).

(24) Y. Tahir, Analytical modeling of ultraviolet radiation blocking for PV module, Master thesis, Hamdard University (2019).

B. PetterJelle, Solar radiation glazing factors for windowpanes, glass structures, and electrochromic windows in buildings. Measurement and calculation, Elsevier, Solar Energy Materials and Solar Cells, 116, pp. 291–323 (2013).

(26) NSRDB Data Viewer, NREL, Accessed on: Dec. 26, 2018. [Internet] Available: https://maps.nrel.gov/nsrdb-viewer/.

(27) X. Feng, X. Qing, C.Y. Chung, H. Qiao, X. Wang, X. Zhao, A simple parameter estimation approach to modeling of photovoltaic modules based on datasheet values, Journal of Solar Energy Engineering, 138 (2016).

(28) M.S. Mehos, K.A. Pacheco, H. Link, Measurement and analysis of near-ultraviolet solar radiation, NREL/fP-253-4493, UC Category: 233 • DE92001181.

(29) Photovoltaic effect, Department of Energy and Mineral Engineering, EME 812, Accessed on: Dec. 24, 2018. [Internet] Available: https://www.e-education.psu.edu/eme812/node/534.

(30) Matthew C., Trystan W., and David W., UV filtering of dye-sensitized solar cells: the effects of varying the UV cut-off upon cell performance and incident photon-to-electron conversion efficiency, International Journal of Photo energy, 9, 506132 (2012).

Téléchargements

Publiée

2022-07-01

Numéro

Rubrique

Termotechnique et termoénergétique

Comment citer

MODÈLE ANALYTIQUE POUR BLOQUER LE RAYONNEMENT ULTRAVIOLET SUR UN MODULE PHOTOVOLTAÏQUE. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(2), 207-212. https://journal.iem.pub.ro/rrst-ee/article/view/85