UNE NOUVELLE MISE EN ŒUVRE DE SCHÉMA DE CONTRÔLE POUR UN GÉNÉRATEUR ASYNCHRONE AUTO-EXCITÉ
Mots-clés :
Générateur asynchrone auto-excité, Contrôle vectoriel, Onduleur à modulation de largeur d'impulsion, Régulation de la tension du bus continu, Conception du contrôleur de compensateur de plombRésumé
Ce travail présente une méthode efficace pour les applications de conversion d'énergie éolienne basée sur un générateur asynchrone auto-excité (SEAG). Dans l'étude adoptée, la machine avec le rotor entraîné par un moteur primaire auxiliaire fournit une puissance active à une charge continue isolée via un convertisseur statique (SC) associé à un condensateur de bus continu à travers son stator. Ainsi, pour une charge déterminée, les tensions statoriques requises du convertisseur sont dérivées en établissant une loi de commande vectorielle spécifique relative à une nouvelle introduction de variable de commande de sortie. Les résultats de simulation présentés et leurs tests expérimentaux correspondants démontrent que la prétendue stratégie de contrôle assure des performances parfaites de suivi de la tension de sortie du bus continu concernant une dérive de charge simultanée et le profil de vitesse mécanique.
Références
(1) G.K. Singh, Self-excited induction generator for renewable applications, Encyclopedia of Sustainable Technologies, Elsevier, 2017, pp. 239–256 (2017).
(2) K. Charafeddine, K. Sangov, S. Tsyruk, Automatic voltage regulation and stability analysis of three-phase self-excited induction generator for wind energy, IEEE 2nd Int. Conf. on the Applications of Information Technology in Developing Renewable Energy Processes & Systems, Amman, Jordan, Dec. 6-8, 2017.
(3) J. Mishra, M. Pattnaik, S. Samanta, Performance evaluation of a self-excited induction generator for stand-alone wind energy conversion system, IEEE Power, Communication and Information Technology Conf., Bhubaneswar, India, Oct. 15-17, 2015.
(4) A. Aberbour, K. Idjdarene, A. Tounzi, Sliding mode direct torque and rotor flux control of an isolated induction generator including magnetic saturation, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 61, 2, pp. 142–146 (2016).
(5) R. Mishra, T.K. Saha, Development of a standalone VSCF generation scheme through three stage control of SCIG, IEEE Region 10 Conference (TENCON), 22-25 Nov. 2016.
(6) L.A. Lopes, R.G. Almeida, Wind-driven self-excited induction generator with voltage and frequency regulated by a reduced-rating voltage source inverter, IEEE Trans. on Ener. Conver., 21, 2, pp. 297–304 (2006).
(7. J.K. Chatterjee, B.V. Perumal, N.R.Gopu, Analysis of operation of a self-excited induction generator with generalized impedance controller, IEEE Transactions on Energy Conversion, 22, 2, pp. 307–315 (2007).
(8) Z. Boudries, A. Aberbour, K. Idjdarene, Study on sliding mode virtual flux-oriented control for three-phase PWM rectifiers, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 61, 2, pp. 153–158 (2016).
(9) O. Abdessemad, A.L. Nemmour, L. Louze, A. Khezzar, An experiment validation of an efficient vector control strategy for an isolated induction generator as wind power conversion, IEEE International Conference on Advanced Electrical Engineering, (ICAEE), Algiers, Algeria, Nov. 19-21, 2019.
(10) S.M. Mahato, S.P. Singh, M.P. Sharma, Direct vector control of stand-alone self-excited induction generator, Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, New Delhi, India, Dec. 20-23, 2010.
(11) S. Hazra, P. Sensarma, Vector approach for self-excitation and control of induction machine in stand-alone wind power generation, IET renewable power generation, 5, 5, pp. 397–405 (2011).
(12) O. Abdessemad, A.L. Nemmour, L. Louze, A. Khezzar, Real-Time Implementation of a Novel Vector Control Strategy for a Self-Excited Asynchronous Generator Driven by a Wind Turbine, Journal Européen des Sys. Automatisés, 54, 2, pp. 235–241 (2021).
(13) T. Ahmed, K. Nishida, M. Nakaoka, Advanced voltage control of induction generator using rotor field-oriented control, Fortieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, Hong Kong, China, Oct. 2-6, 2005.
(14) N.P. Quang, J.A. Dittrich, Vector Control of Three-Phase AC Machines: System Development in the Practice. Berlin, Heidelberg: Springer (2008).
(15) D. Seyoum, M.F. Rahman, C. Grantham, Terminal voltage control of a wind turbine driven isolated induction generator using stator-oriented field control, Eighteenth Annual IEEE Applied Power Electronics Conf. and Exposition, FL, USA, Feb. 9-13 2003.
(16) A.L. Nemmour, L. Louze, A. Khezzar, M. Boucherma, Terminal Voltage Control of Variable Speed Induction Generator Driven by a Wind Turbine Supplying a DC Load, International Aegean Conference on Electrical Machines and Power Electronics, Bodrum, Turkey, Sept. 10-12, 2007.
(17) S.S. Kumar, N. Kumaresan, M. Subbiah, M. Rageeru, Modelling, analysis and control of stand-alone self-excited induction generator-pulse width modulation rectifier systems feeding constant DC voltage applications, IET Generation, Transmission & Distribution, 8, 6, pp. 1140–1155 (2014).
(18) S.A. Deraz, F.A. Kader, A new control strategy for a stand-alone self-excited induction generator driven by a variable speed wind turbine, Renewable Energy, 51, pp. 263–273 (2013).
(19) L. Louze, O. Abdessemad, A.L. Nemmour, A. Khezzar, An effective control of an isolated induction generator supplying DC load for wind power converting applications, Electrical Engineering and Electromechanics, 3, pp. 65–69 (2020).
(20) S. Meddouri, K. Idjdarene, L. Ferrarini, Control of autonomous saturated induction generator associated to a flywheel energy storage system, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 61, 4, pp. 372–377 (2016).
(21) E. Margato, J. Faria, M.J. Resende, J. Palma, A new control strategy with saturation effect compensation for an autonomous induction generator driven by wide speed range turbines, Energy Conversion and Management, 52, 5, pp. 2142–2152 (2011).
(22) F. Amrane et al., Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 61, 4, pp. 319–324 (2016).
(23) O. Bachir, A.F. Zoubir, Comparative analysis of robust controller based on classical proportional-integral controller approach for power control of wind energy system, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 63, 2, pp. 210–216 (2018).
(24) W. Leonard Control of Electrical Drives, New York: Springer. 1985.
(25) P. Vas Vector Control of AC Machines. Oxford, U.K.: Oxford University Press, 1990.
(26) A. Kerboua, M. Abid, Hybrid fuzzy sliding mode control of a doubly-fed induction generator in wind turbines, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 57, 4, pp. 412–421 (2012).
(27) R.V. Dukkipati, Analysis and Design of Control Systems Using MATLAB, Connecticut, USA: New Age International, 2006.