SCHÉMA DE CONTRÔLE DE MODULATION DE LARGEUR D'IMPULSIONS Sinusoïdale À DÉCALAGE VERS LA GAUCHE EFFICACE POUR LE FILTRE DE PUISSANCE ACTIF SÉRIE BASÉ SUR DES TOPOLOGIES D'INVERSEUR À POINT NEUTRE À SEPT NIVEAUX

Auteurs

  • SALIM CHENNAI Nuclear Research Center of Birine, Electrical Engineering Department Author

Mots-clés :

Onduleur à point neutre à sept niveaux, Filtre de puissance active en série, Amélioration de la qualité de l'alimentation, Commande logique floue, Modulation de largeur d'impulsion sinusoïdale à décalage vers la gauche

Résumé

Cet article présente les performances d'un filtre de puissance active série (APF) basé sur un onduleur à sept niveaux à point neutre bloqué (NPC) utilisant des stratégies modifiées de contrôle de la puissance réactive instantanée. Aujourd'hui, les onduleurs multiniveaux sont étudiés et utilisés dans diverses applications industrielles. Les techniques de contrôle flou sont employées avec succès dans diverses applications; ils représentent une bonne alternative aux systèmes de contrôle classiques. Pour bénéficier de tous ces avantages, un nouveau schéma de contrôle pour la série APF basé sur un onduleur à sept niveaux à point neutre verrouillé (NPC) utilisant une modulation multiporteuse à décalage de niveau et une approche de contrôle flou est proposé dans ce travail. La simulation est réalisée à l'aide des logiciels MATLAB-Simulink et SimPowerSystem. Les résultats montrent l'efficacité et la robustesse du schéma de contrôle proposé adopté pour le système de filtre de puissance active série en compensant les harmoniques et toutes les perturbations de tension.

Références

(1) A.M., Hamadi A., N.A., Rahmani, S. Al-Haddad K., Sliding mode control of three-phase series hybrid power filter with reduced cost and rating, IEEE, pp. 1495-1500 (2018).

(2) A. Kazami, S.A, Davari, A reference detection algorithm for series active power filters, aimed at current harmonics and reactive power compensation, IEEE, Second IEEE Conference on Industrial Electronics and Applications, pp. 1761-1766 (2007).

(3) H.Z. Hong, C. Pingping, L. Zhengyu, Q. Zhaoming, Novel control scheme based on per-phase reference current calculation for hybrid series active power filter with fundamental current bypass channel in unbalanced conditions, IEEE, 35th Annual Power Electronics Specialists Conference, pp. 999-1002 (2004).

(4) F-B. Libano, S.L. Muller, R-A-M. Braga, J-V-R. Nunes, O-S. Mano, I-A. Paranhos, Simplified control of the series active power filter for voltage conditioning, IEEE ISIE 2006, July 9-12, 2006, Montreal, Quebec, Canada, pp. 1706-1711 (2006).

(5) S. Bhim, V. Vishal, A new control scheme for a series active filter for varying rectifier load, The Fifth International Conference on Power Electronics and Drive Systems, 2003, PEDS, November 17-20, 2003, 1, pp. 554-559 (2003).

(6) A. Javadi, A. Hamadi, M. Haddad, S. Rahmani, K. Al-Haddad, A novel hybrid detection approach for series compensation under grid perturbation, IEEE International Conference on Industrial Technology (ICIT), pp. 2565-2570 (2015).

(7) S. Ambra, S. Jan, L. Tomas, Power electronic solutions to power quality problems, Electric Power Systems Research 66, pp. 71–83, (2003).

(8) Z. Ye, Y. Xu, X. Wu, G. Tan, X. Deng, Z. Wang, A simplified PWM strategy for a neutral-point-clamped (NPC) three-level converter with unbalanced dc links, IEEE Trans. Power Electron., 31, 4, pp. 3227-3238 (2016).

(9) X. Peng, K. Ganesh, K. Venayagamoorthy A. Corzine, Seven-level shunt active power filter for high-power drive systems, IEEE Transactions on power electronics, 24, 1, pp. 6–13, (2009).

(10) L. Parvulescu, D. Floricau, M. Covrig, Comparaison between five-level flying capacitor structures, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 57, 1, pp. 40–51 (2012).

(11) I. Colak, E. Kabalci, G. Keven, Comparison of multi-carrier techniques in seven-level asymmetric cascade multilevel inverter, 4th International Conference on Power Engineering, Energy and Electrical Drives, IEEE, pp. 1619-1624 (2013).

(12) G. Preethi, M.J. Gayathri, V. Jamuna, Digital simulation of multicarrier PWM strategy for multi-level inverter, 2012 International Conference on Computing, Electronics and Electrical Technologies [ICCEET], IEEE, pp. 509-514 (2012).

(13) T. Ahmadzadeh, M. Sabahi, E. Babaei, Modified PWM control method for neutral point clamped multilevel inverters, 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology (ECTI-CON), pp. 765-768 (2017).

(14) S. Chennai, M.T. Benchouia, Three-phase three-level (NPC) shunt active power filter performances based on PWM and ANN’s controllers for harmonic current compensation, International Journal on Electrical Engineering, and Informatics, IJEEI, 6, 1, pp. 213–234 (2014).

(15) A. Ben Amar, L. Zellouma, M.T. Benchouia, T. Mahni, Three-phase four-wire shunt active power filter based on backstepping controller, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 64, 4, pp. 397–402 (2019).

(16) İ. Sefa, N. Altin, Simulation of fuzzy logic-controlled grid-interactive inverter, University of Pitesti- Electronics and Computers Science Bulletin, 2, 8, pp. 30–35 (2008).

(17) J.M. Correa et al., A fuzzy-controlled pulse density modulation strategy for a series resonant inverter with wide load range, proceeding of the Conference on Power Electronics Specialists, PESC'03, Acapulco, Mexico pp. 15-19 (2003).

(18) S. Chennai, M.T. Benchouia, Simplified control scheme of unified power quality conditioner based on three-phase three-level (NPC) inverter to mitigate current source harmonics and compensate all voltage disturbances, Journal of Electrical Engineering & Technology JEET (KIEE), 8, 3, pp. 544–558 (2013).

(19) S. Chennai, Three-level neutral point clamped shunt active power filter performances using intelligent controllers, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 59, 3, pp. 303–313 (2014).

(20) Y. Suresh, A.K. Panda, M. Matada, An improved performance of cascaded multilevel inverter with single dc source by employing three-phase transformers, IEEE (2011).

(21) K. Satish, M. Satyanarayana, Comparative analysis of modulation strategies applied to seven-level diode clamped multi-level inverter fed induction motor drive, IEEE, 2015 Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG), pp. 231-237 (2015).

(22) J.N. Mistry, K. Vakharia, D. Tailor, B. Patel, Software and hardware implementation of five level neutral point clamped inverter, International Conference on Electrical, Electronics and Optimization Techniques (ICEEOT), IEEE (2016).

(23) H.H Reyes, S. Patricio, K. Hyosung, Instantaneous reactive power theory applied to active power filter compensation: different approaches, Assessment, and experimental results, IEEE, Trans. on Industrial Electronics, pp. 184-196 (2008).

(24) T.N. Reddy, M.V. Subramanyam, Fuzzy logic-controlled shunt active power filter for mitigation of harmonics with different membership, IEEE, International Conference on Advances in Computing, Control, and Telecommunication, pp. 616-620. 2009.

(25) S. Chennai, Power quality enhancement with UPQC Systems based on multi-level (NPC) inverters, Advanced Control Engineering Methods in Electrical Engineering Systems. ICEECA 2017. Lecture Notes in Electrical Engineering, 522, Springer, pp. 3–16 (2019).

(26) N. Gupta, S.P. Singh, S.P. Dubey., Fuzzy logic-controlled shunt active power filter for reactive power compensation and harmonic elimination, International Conference on Computer & Communication Technology (ICCCT), IEEE, pp .82-87 (2011).

(27) T. Georgios, A. Georgios, Shunt active power filter control using fuzzy logic controllers, IEEE, pp. 365-371 (2011).

(28) D. Wenjin, W. Baofu, X. Youhui., A novel fuzzy logic controller for active power filter, CIMSA 2009 - International Conference on Computational, Intelligence for Measurement Systems and Applications, Hong Kong, China May 11-13 (2009).

(29) S. Chennai, M.T Benchouia, A. Goléa, Harmonic currents compensation based on three-level shunt active filter using fuzzy logic current controller, Journal of Electrical Engineering & Technology, KIEE, September 6, 5, pp. 595–604 (2011).

Téléchargements

Publiée

2022-12-22

Numéro

Rubrique

Électronique et transmission de l’information | Electronics & Information Technology

Comment citer

SCHÉMA DE CONTRÔLE DE MODULATION DE LARGEUR D’IMPULSIONS Sinusoïdale À DÉCALAGE VERS LA GAUCHE EFFICACE POUR LE FILTRE DE PUISSANCE ACTIF SÉRIE BASÉ SUR DES TOPOLOGIES D’INVERSEUR À POINT NEUTRE À SEPT NIVEAUX. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(4), 467-472. https://journal.iem.pub.ro/rrst-ee/article/view/240