IMPACT D'UN DÉFAUT DE COURT-CIRCUIT INCIPANT SUR LA CONTINUITÉ DE SERVICE D'UN VÉHICULE ÉLECTRIQUE PROPULSÉ PAR STRUCTURE À DOUBLE MOTEURS À INDUCTION

Auteurs

  • SALAH-YAHIA CHERIF LSP-IE’2000 Laboratory, Electrical Engineering department, University of Batna 2, 05000 Author
  • DJAMEL BENOUDJIT Health and Safety Institute, University of Batna 2, 53 route de Constantine, 05078, Batna Author
  • MOHAMED-SAID NAIT-SAID LSP-IE’2000 Laboratory, Electrical Engineering department, University of Batna 2, 05000 Author
  • NASREDDINE NAIT-SAID LSP-IE’2000 Laboratory, Electrical Engineering department, University of Batna 2, 05000 Author

Mots-clés :

Moteur à induction, Backstepping control, Turn-to-turn fault, Véhicule électrique, Structure du propulseur

Résumé

Le court-circuit est l'un des défauts électriques les plus dangereux dans les moteurs à induction, ce qui entraîne de graves conséquences sur le fonctionnement du moteur et ses performances. Le présent article traite de l'influence du défaut de court-circuit stator à ses débuts en termes de performances et de continuité de service d'un véhicule électrique (VE) utilisant une structure de moteur à double induction pilotée par commande Backstepping. Un modèle de moteur à induction équivalent avec défaut de tour à tour sur une phase du stator, sans déjà assumer l'effet de la température à travers un modèle intrinsèque, est étudié et ensuite ses impacts sur les performances du véhicule électrique à l'aide de tests de simulation sont présentés et discutés.

Références

(1) Toufik Roubache, Souad Chaouch, Mohamed-Saïd Naït-Saïd, Backstepping design for fault detection and FTC of an induction motor drives-based EVs, Automatika, 57, 3, pp 736–748 (2016).

(2) P. Gangsar, R. Tiwari, Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review, Mechanical Systems and Signal Processing, 144, pp. 1–37 (October 2020).

(3) S Bindu, Vinod V Thomas, Diagnoses of internal faults of three-phase squirrel cage induction motor – A review, International Conference on Advances in Energy Conversion Technologies IEEE (ICAECT), Manipal, India, pp. 48–54 (Jan 23-25, 2014).

(4) S. Nandi, H.A. Toliyat, X. Li, Condition monitoring and fault diagnosis of electrical motors – A review, IEEE Trans. Energy Conversion, 20, 4, pp. 719–729 (2005).

(5) M. Riera-Guasp, J.A. Antonino-Daviu, G.-A. Capolino, Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art, IEEE Trans. Ind. Electron., 62, 3, pp. 1746–1759 (2015).

(6) M.A. Mazzoletti, G.R. Bossio, C.H. De Angelo, D.R. Espinoza-Trejo, A model-based strategy for inter turn short-circuit fault diagnosis in PMSM, IEEE Transactions on Industrial Electronics, 64, 9, pp. 7218–7228 (September 2017).

(7) Y. Wu, B. Jiang, Yulong Wang, Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains, ISA Transactions, 99, pp. 488–495 (2020).

(8) J.B. Teguia, G.C. Fouokeng, G.P. Kenne, Induction motor windings faults detection using active and reactive power based model reference adaptive system estimator, Int. J. of Progressive Sciences and Technologies (IJPSAT), 23, 2, pp. 66–86 (2 November 2020).

(9) S.S. Dhamal, M.V. Bhatkar, Modelling and simulation of three-phase induction motor to diagnose the performance on inter-turn short circuit fault in stator winding, International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, UP, India, pp. 1166–1172 (Sep 28-29, 2018).

(10) A.V.J.S. Praneeth, S.S. Williamson, Algorithm for prediction and control of induction motor stator interturn faults in electric vehicles, IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, USA, pp. 130–134 (June 22-24, 2017).

(11) A. Gandhi, T. Corrigan, L. Parsa, Recent advances in modeling and online detection of stator interturn faults in electrical motors, IEEE Trans. on Ind. Electronics, 58, 5, pp. 1564–1575 (2011).

(12) K.N. Gyftakis, A.J.M. Cardoso, Reliable detection of stator interturn faults of very low severity level in induction motors, IEEE Transactions on Industrial Electronics, 68, 4, pp. 3475–3484 (11 March 2020).

(13) S. M.A. Cruz, A.J.M. Cardoso, Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach, IEEE Transactions on Industry Applications, 37, 5, pp. 1227–1233 (Sep.-Oct. 2001).

(14) L. Heming, S. Liling, X. Boqiang, Research on transient behaviors and detection methods of stator winding inter-turn short circuit fault in induction motors based on multi-loop mathematical model, IEEE International Conference on Electrical Machines and Systems, Nanjing, China, pp. 1951–1955 (27-29 Sept. 2005).

(15) G.H. Bazan, P.R. Scalassara, W. Emdo, A. Goedtel, R.H.C. Palacios, W.F. Godoy, Stator short-circuit diagnosis in induction motors using mutual information and intelligent systems, IEEE Trans. on Ind. Electronics, 66, 4, pp. 3237–3246 (Apr. 2019).

(16) S. Bachir S. Tnani, J.C. Rigeassou, G. Champenois, Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines, IEEE Transactions on Industrial Electronics, 53, 3, pp.963–973 (2006).

(17) M. Bouzid, G. Champenois, A novel reliable indicator of stator windings fault in induction motor extracted from the symmetrical components, IEEE Int. Symposium on Ind. Electronics Conference, Gdansk, Poland, pp. 489–495 (27-30 June 2011).

(18) A. El Kharki, Z. Boulghasoul, L. Et-Taaj, Z. Kandoussi, A. Elbacha, Real-time implementation of backstepping control for high performances induction motor drive, 4th World Conference on Complex Systems (WCCS), Ouarzazate, Morocco, 22-25 April (2019).

(19) R. Trabelsia, A. Khedher, M.F. Mimouni, F. M’sahli, Backstepping control for an induction motor using an adaptive sliding rotor-flux observer, Electric Power Systems Research, 93, pp. 1–15 (December 2012).

(20. S. Vaidyanathan, A.T. Azar, Backstepping control of nonlinear dynamical systems, 1st edition, Academic Press, 15th august 2020, p. 1–515.

(21) M. Horch, A. Boumediene, L. Baghli, Backstepping approach for nonlinear super twisting sliding mode control of an induction motor, 3rd International Conference on Control, Engineering & Information Technology, IEEE CEIT’2015, Tlemcen, Algeria, 25-26 May (2015).

(22) T. Ameid, A. Menacer, R. Romary, R. Pusca, H. Talhaoui, DWT for rotor bars fault detection applied to Backstepping control induction motor drive in low-speed, 43th Annual Conf. of the IEEE Ind. Electronics Society, pp. 8059–8064, 29 Oct.-1 Nov. (2017).

(23) S.S. Dhamal, M.V. Bhatkar, Modelling and simulation of three-phase induction motor to diagnose the performance on inter-turn short circuit fault in stator winding, International Conference on Computing, Power and Communication Technologies (GUCON), pp. 1166–1172, Greater Noida, India, 28-29 Sept. (2018).

(24) A. Hamoudi, B. Kouadri, On-line stator winding inter-turn short-circuits detection in induction motors using recursive levenberg-marquardt algorithm, International Journal on Electrical Engineering and Informatics, 9, 1, pp. 42–57 (2017).

(25) M. Bouakoura, M.-S. Nait-Said, N. Naït-Saïd, Incipient inter-turn short circuit fault estimation based on a faulty model observer and ann-method for induction motor drives, Recent Advances in Electrical & Electronic Engineering, 12, pp. 1–7 (2019).

(26) D. Benoudjit, N. Nait-Said, M-S, Nait-Said, Differential speed control of a propulsion system using fractional-order controller, Electromotion J., 14, 2, pp. 91–98, April-June (2007).

Téléchargements

Publiée

2022-09-30

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

IMPACT D’UN DÉFAUT DE COURT-CIRCUIT INCIPANT SUR LA CONTINUITÉ DE SERVICE D’UN VÉHICULE ÉLECTRIQUE PROPULSÉ PAR STRUCTURE À DOUBLE MOTEURS À INDUCTION. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(3), 265-270. https://journal.iem.pub.ro/rrst-ee/article/view/191