THE IMPROVEMENT MADE BY THE NONLINEAR PROPORTIONAL INTEGRAL CONTROLLER COMPARED TO THE VARIABLE GAIN PROPORTIONAL INTEGRAL CONTROLLER

n/a

Authors

  • MOHAMED TOUHAMI Labo CAOSEE, Université Tahar Mohammed Béchar Author
  • ABDELDJEBAR HAZZAB Labo CAOSSE, Université Tahar Mohammed Béchar Author

DOI:

https://doi.org/10.59277/RRST-EE.2023.68.2.7

Keywords:

Nonlinear PI controller (NLPI), Variable Gain PI controller (VGPI), Asynchronous machine, Nonlinear function (fal)

Abstract

The nonlinear PI controller (NLPI) provides a better performance level compared to those of the most well-known algorithms for velocity and flux control. It is best suited to control the parameters of changing process characteristics. This article reports on developing an NLPI controller using the nonlinear function approach. Provide the theory, the algorithm used, the software aspects of the system implementation, and the results of simulation tests obtained on a process control system.

References

(1) M. Touhami, Synthèse de contrôleurs non linéaires pour la commande d'un moteur à induction, Thèse de Doctorat présentée à l’Université de Béchar, Tahri Mohammed, Algérie (décembre 2019).

(2) A. Derbane, B. Tabbache, A. Ahriche, A fuzzy logic approach based direct torque control and five-leg voltage source inverter for electric vehicle powertrains, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 66, 1, pp. 15–20 (2021).

(3) E. Boudissa, F. Habbi, N. Gabour, M. Bounekhla, A new dynamic genetic selection algorithm: application to induction machine identification, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 66, 3, pp. 145–151 (2021).

(4) A. Beddar, H. Bouzekri, B. Babes, H. Afghoul, Real time implementation of improved fractional order proportional-integral controller for grid connected wind energy conversion system, Rev. Roum. Sci. Techn.– Électrotechn. ET Énerg., 61, 4, pp. 402–407 (2016).

(5) N. Petit, P. Rouchon, Automatic dynamics and systems control, MINES ParisTech. CAS - Automation and Systems Center, Mathematics and Systems Unit., February (2011).

(6) F. Mokhtari, P. Sicard, A. Hazzab, Decentralized nonlinear control strategies for disturbance rejection in winding systems, IEEE IEMDC (2011).

(7) P. Durongdumrongchali, W. Sa-Ngiamvibool, A. Aurasopon, S. Pothiya, Robust and optimal fuzzy logic proportional integral derivative controllers design by bee algorithm for hydro-thermal system, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 59, 2, pp. 193–203 (2014).

(8) T. M. Chikouche, A. Mezouar, T. Terras and S. Hadjeri, Variable gain PI controller design for speed control of a doubly fed induction motor, ETASR – Eng., Technol. & Appl. Scie.e Res., 3, 3, pp. 433-439 (2013).

(9) J. E. McInroy, J. C. Hamann, Design and control of flexure jointed hexapods, IEEE Trans. Robot. Autom., 16, 4, pp. 372–381 (2011).

(10) B. Armstrong, D. Neevel, and T. Kusik, New results in NPID control: tracking, integral control, friction compensation and experimental results, IEEE Trans. Control Syst. Technol., 9, 2, pp. 399–406, 2001.

(11) J. Han, From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 56, 900–906 (2009).

(12) A. Asri, Y. Mihoubi, S. Hassaine, T. Allaoui, P. O. Logerais, A. Amiar, An adaptive fuzzy proportional integral method for maximum power point tracking control of permanent magnet synchronous generator wind energy conversion system, Rev. Roum. Sci. Techn.– Électrotechn. Et Énerg., 63, 3, pp. 320–325, Bucarest (2018).

(13) Y.X Su, C.H Zheng, B.Y Duan, Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors, IEEE Trans. Ind. Electron. 2005, 52, pp. 814–823, Electronics, 2, 279 (2013).

(14) E. V. L. Nunes, L. Hsu, F. Lizarralde, Global exact tracking for uncertain systems using output-feedback sliding mode control, IEEE Trans. Autom. Control, 54, 5, pp. 1141–1147 (2009).

(15) R. A. Krohling, J. P. Rey, Design of optimal disturbance rejection PID controllers using genetic algorithm, IEEE Trans. Evol. Comput., 5, pp. 78–82 (2001).

(16. A. M. Abdelkader, H. Kada, M. Khalfaoui, Contrôle latéral amélioré d'un véhicule autonome, 10èmes Journées de Mécanique de l’EMP (JM’10) Bordj El-Bahri (12-13 Avril 2016).

(17. J. Jamaludin, J. Suman, Design a fuzzy logic controller for a rotary flexible joint robotic arm, MATEC Web of Conferences 150, 01011 (2018).

(18. A. B. Sun, Z. Gao, A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter, IEEE Trans. Ind. Electron., 52, pp.1271–1277 (2005).

(19. K.K. Tan, T.H. Lee, H.X. Zhou, Micro-position of linear piezoelectric motors based on a learning nonlinear PID controller, IEEE/ASME Trans. Mechatronics, 6, 4, pp. 428–436 (2001).

(20) P. Kumar, M. Kumar, N. Pal, An efficient control approach of voltage and frequency regulation in an autonomous microgrid, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 66, 1, pp. 33–39 (2021).

Downloads

Published

03.07.2023

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

THE IMPROVEMENT MADE BY THE NONLINEAR PROPORTIONAL INTEGRAL CONTROLLER COMPARED TO THE VARIABLE GAIN PROPORTIONAL INTEGRAL CONTROLLER: n/a. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(2), 158-163. https://doi.org/10.59277/RRST-EE.2023.68.2.7