OPTIMAL REACTIVE POWER MANAGEMENT FOR MICROGRIDS BASED ON PHOTOVOLTAIC INVERTERS USING SINE-COSINE ALGORITHM

Authors

  • MIHAI BURLACU Universitatea Politehnica din Bucureşti
  • Valentin NĂVRĂPESCU Universitatea Politehnica din Bucureşti
  • AUREL-IONUŢ CHIRILĂ Universitatea Politehnica din Bucureşti
  • IOAN-DRAGOŞ DEACONU Universitatea Politehnica din Bucureşti

Keywords:

Photovoltaic, Inverters, Sine-cosine algorithm, microgrid, Optimal reactive power management

Abstract

In this paper, an optimization problem is formulated for determining the optimal reactive power management strategy, for a microgrid, based on the reactive power support provided by the inverters from photovoltaic power plants (PVPPs). The optimization problem is solved by applying a recent and performant metaheuristic, namely the Sine-Cosine Algorithm. Multiple scenarios are defined, depending on the load and PVPP active power output, and the results obtained by the proposed strategy are presented in comparison with a reactive power management strategy based only on capacitor banks (CBs).

References

(1) Sk.A. Aleem, S.M.S. Hussain, T.S. Ustun, A review of strategies to increase PV penetration level and impact of PV penetration on grid, Energies, 13, 3, pp. 636 (2020).

(2) IEEE Std 2030.7-2017, IEEE Standard for the Specification of Microgrid Controllers

(3 A.C. Pérez-Flores, J.D.M. Antonio, V.H. Olivares-Peregrino, H. R. Jiménez-Grajales, A. Claudio-Sánchez, G. V. G. Ramírez, Microgrid energy management with asynchronous decentralized particle swarm optimization, IEEE Access, 9, pp. 69588-69600 (2021).

(4 ) N. Sridhar, M. Kowsalya, Enhancement of power management in micro grid system using adaptive ALO technique, Journal of Ambient Intelligence and Humanized Computing, 12, pp. 2163–2182 (2021)

(5) K.S. Nimma, M.D.A Al-Falahi, H.D. Nguyen, S.D.G Jayasinghe, T.S. Mahmoud, M. Negnevitsky, Grey wolf optimization-based optimum energy-management and battery-sizing method for grid-connected microgrids, Energies, 11, 4, pp. 847 (2018)

(6) D. Sidea, L. Toma, M. Sanduleac, I. Picioroaga, V. Boicea, Optimal BESS scheduling strategy in microgrids based on genetic algorithms, 2019 IEEE Milan PowerTech, Milan, Italy, 2019

(7) Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin D. Allam, Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer, IEEE Access, 9, pp. 120774-120794 (2021)

(8) W. Al-Saedi, S. Lachowicz, D. Habibi, O. Bass, Power quality enhancement in autonomous microgrid operation using Particle Swarm Optimization, International Journal of Electrical Power & Energy System, 42, 1, pp. 1-6 (2011)

(9) D.O. Sidea, I.I. Picioroaga, C. Bulac, Optimal battery energy storage system scheduling based on mutation-improved grey wolf optimizer using GPU-accelerated load flow in active distribution networks, IEEE Access, 9, pp. 13922-13937, (2021)

(10) S.A. El-sattar, S. Kamel, M. Ebeed, F. Jurado, An improved version of salp swarm algorithm for solving optimal power flow problem. Soft Computing, 25, pp. 4027-4052 (2021)

(11) M. Moradian, A. Najjar-Khodabakhsh, S. Shojaeian, Unit commitment cost and reliability optimization based on an improved genetic algorithm, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 59, 1, pp. 25-33 (2014)

(12) H. Labdelaoui, F. Boudjema, D. Boukhetala, Multiobjective Optimal Design of Dual-Input Power System Stabilizer using Genetic Algorithms, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 62, 1, pp. 93-97 (2017).

(13) S. Ziane, A. Abdelghani, M. Abid, Power control of doubly fed induction generator using hybrid adaptive neural fuzzy sliding mode controller optimised by genetic algorithm, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 63, 4, pp. 411-416 (2018).

(14) M. Eremia (ed.) et al. - Electric Power Systems: Vol. 1 Electric networks, Publishing House of the Romanian Academy, Bucharest (2006).

(15) C.T. Phan-Tan, M. Hill, Optimal PV inverter control for network voltage and power factor regulation, 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (2020).

(16) S. Mirjalili, SCA: A Sine Cosine Algorithm for Solving Optimization Problems, Knowledge-Based Systems, 96, pp. 120-133 (2016).

(17) A.B. Gabis, Y. Meraihi, S. Mirjalili, A. Ramdane-Cherif, A comprehensive survey of sine cosine algorithm: variants and applications, Artificial Intelligence Review, 54, pp. 5469-5540 (2021).

(18) D. Gonidakis , A. Vlachos, A new sine cosine algorithm for economic and emission dispatch problems with price penalty factors, Journal of Information and Optimization Sciences, 40, 3, pp. 679–697 (2019).

(19) R.K. Sahu, B. Shaw, J.R. Nayak, Fractional-order PID controller optimized by SCA for solar system, International Conference on Artificial Intelligence, Smart Grid and Smart City Applications, Springer, pp. 1–10 (2019).

(20) A. A. Abdelsalam, Optimal distributed energy resources allocation for enriching reliability and economic benefits using sine–cosine algorithm, Technology and Economics of Smart Grids and Sustainable Energy, 5, 1, pp. 1–18 (2020).

(21) TF C6.04.02: TB 575 Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources, CIGRE, 2014

(22) Twenpower Medium-Voltage XLPE Cables Catalogue, online at: https://t3.lappcdn.com/fileadmin/DAM/Miltronic_Sweden/4_Servicecenter/2Nedladdningscenter/TKF_Twenpower_Medium_Voltage.pdf

(23) M. Farivar, R. Neal, C. Clarke, S Low, Optimal Inverter VAR Control in Distribution Systems with High PV Penetration, 2012 IEEE Power and Energy Society General Meeting, San Diego, USA, (2012).

Downloads

Published

01.07.2022

Issue

Section

Électrotechnique et électroénergétique / Electrical and Power Engineering