APPLICATION OF LASER TECHNOLOGY IN URINARY STONE TREATMENT

Authors

  • VICTOR CAUNI Colentina Clinical Hospital, Department of Urology, Bucharest Author
  • BOGDAN MIHAI Colentina Clinical Hospital, Department of Urology, Bucharest Author
  • FLORIN TĂNASE "Carol Davila” University of Medicine and Pharmacy, Dept. of Urology, Bucharest Author
  • CRISTIAN PERŞU "Carol Davila” University of Medicine and Pharmacy, Dept. of Urology, Bucharest Author
  • IRINA CIOFU "Carol Davila” University of Medicine and Pharmacy, Dept. of Urology, Bucharest Author

Keywords:

Laser, Lithotripsy, Holmium, YAG Laser, Thulium fiber laser

Abstract

Ureteroscopy with laser lithotripsy is now the main surgical treatment option for most patients with urinary stones. Holmium laser is still considered the gold standard for laser lithotripsy. In this review, we will discuss the characteristics of different lasers and their use in lithotripsy while trying to identify the next potential lasers suitable for laser lithotripsy.

References

(1) A. Pietropaolo, S. Proietti, R. Geraghty, et al., Trends of urolithiasis: interventions, simulation, and laser technology’ over the last 16 years (2000–2015) as published in the literature (PubMed): a systematic review from European section of Uro-technology (ESUT). World J. Urol. 35, pp. 1651–8165 (2017).

(2) O.A. Raheem, Y.S. Khandwala, R.L. Sur, K.R. Ghani, J.D. Denstedt, Burden of urolithiasis: trends in prevalence, treatments, and costs, Eur. Urol. Focus, 3, pp. 18–26 (2017).

(3) ***Trends in Upper Tract Stone Disease in England: Evidence from the Hospital Episodes Statistics Database, Urol Int. 98, 4, pp. 391-396 (2017).

(4) J.K.M. Li, J.Y.C Teoh, C.-F. Ng, Updates in endourological management of urolithiasis International, J. of Urology, 26, pp. 172-183 (2019).

(5) D.T. Oberlin, A.S. Flum, L. Bachrach, R.S Matulewicz, S.C. Flury, Contemporary surgical trends in the management of upper tract calculi, J. Urol., 193, 3, pp. 880-884 (2015).

(6) Dretler, S. P. Laser lithotripsy: a review of 20 years of research and clinical applications. Lasers Surg. Med. 8, 341–356 (1988).

(7) E. Steiger, The Nd:YAG-laser in laser-lithotripsy: possibilities and limitations due to system performance, in: Waidelich W., Waidelich R. (eds) Laser/Optoelektronik in der Medizin / Laser/Optoelectronics in Medicine. Springer, Berlin, Heidelberg (1990).

(8) D.E. Johnson, D.M. Cromeens, R.E. Price, Use of the holmium:YAG laser in urology, Lasers Surg. Med., 12, 4, pp. 353–363 (1992).

(9) J.M. Teichman, G.J. Vassar, J.T. Bishoff, G.C. Bellman. Holmium:YAG Lithotripsy yields smaller fragments than litho- clast, pulsed dye laser or electrohydraulic lithotripsy, J. Urol. 159, 1, pp. 17–23 (1998).

(10) P. Kronenberg, O. Traxer, Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers, World J. Urol., 33, 4, pp. 463–469 (2015)

(11) O. Traxer, E.X. Keller, Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser, World J. Urol., 38, pp. 1883–1894 (2020).

(12) A.J. Welch, H.W. Kang, H. Lee, J.M. Teichman, Calculus fragmentation in laser lithotripsy, Minerva Urol. Nefrol., 56, pp. 49–63 (2004).

(13) N.M. Fried, Recent advances in infrared laser lithotripsy, Biomed. Opt. Express, 9, pp. 4552–4568 (2018).

(14) L.A. Hardy, P.B. Irby, N.M. Fried, in Scanning Electron Microscopy of Real And Artificial Kidney Stones Before and After Thulium Fiber Laser Ablation in Air and Water, SPIE BiOS: Therapeutics and Diagnostics in Urology (10468, 104680G); SPIE, 2018.

(15) J. Sea, L.M. Jonat, B.H. Chew, J. Qiu, B. Wang, J. Hoopman J, et al., Optimal power settings for Holmium:YAG lithotripsy, J. Urol., 187, pp. 914–919 (2012).

(16) J. Tracey, G. Gagin, D. Morhardt, J. Hollingsworth, K.R. Ghani, Ureteroscopic high-frequency dusting utilizing a 120-W holmium laser, J. Endourol., 32, pp. 290–295 (2018).

(17) A.H. Aldoukhi, W.W. Roberts, T.L. Hall, K.R. Ghani, Watch your distance: the role of laser fiber working distance on fragmentation when altering pulse width or modulation, J. Endourol., 33, pp. 120–126 (2018).

(18) H.W. Kang, H. Lee, J.M. Teichman, J. Oh, J. Kim, A.J. Welch, Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy, Lasers Surg. Med., 38, pp. 762–72 (2006).

(19) M.M. Elhilali, S. Badaan, A. Ibrahim, S. Andonian, Use of the Moses technology to improve holmium laser lithotripsy outcomes: a preclinical study, J. Endourol., 31, pp. 598–604 (2017).

(20) A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues, Chem. Rev., 103, pp. 577–644 (2003).

(21) Welch, A. J., van Gemert, M. J. C., Star, W. M. & Wilson, B. C. in Optical-Thermal Response of Laser-Irradiated Tissue (eds. A.J. Welch, M.J.C. van Gemert), pp. 27–64, Springer, 1995.

(22) C.D. Scales Jr., T.L. Krupski, L.H. Curtis, et al., Practice variation in the surgical management of urinary lithiasis, J. Urol., 186, 1, pp. 146-150 (2011).

(23) N.M. Fried, P.B. Irby, Advances in laser technology and fiber-optic delivery systems in lithotripsy, Nat. Rev. Urol., 15, pp. 563–573 (2018).

(24) W.R. Molina, et al., Influence of saline on temperature profile of laser lithotripsy activation, J. Endourol., 29, pp. 235–239 (2015).

(25) D.A. Wollin, et al., Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model, J. Endourol. 32, pp. 59–63 (2018).

(26) P.C. May, R.S. Hsi, H. Tran, M.L. Stoller, B.H. Chew, T. Chi et al., The morbidity of ureteral strictures in patients with prior ureteroscopic stone surgery: multi- institutional outcomes, J. Endourol., 32, 4, pp. 309-314 (2018).

(27) D.A. Wollin, E.C. Carlos, W.R. Tom, W.N. Simmons, G.M. Preminger, M.E. Lipkin, Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model, J. Endourol., 32, 1, pp. 59-63 (2018).

(28) A.D. Maxwell, B. MacConaghy, J.D. Harper, A.H. Aldoukhi, T.L. Hall, W.W. Roberts, Simulation of laser lithotripsy-induced heating in the urinary tract, J. Endourol., 33, 2, pp. 113-119 (2019).

(29) A.H. Aldoukhi, W.W. Roberts, T.L. Hall, K.R. Ghani Holmium Laser Lithotripsy in the new stone age: dust or bust? Front. Surg., 4, 57 (2017)

(30) B.R Matlaga, B. Chew, B. Eisner, M. Humphreys, B. Knudsen, A. Krambeck, D. Lange, M. Lipkin, N.L. Miller, M. Monga, V. Pais, R.L. Sur, O. Shah, Ureteroscopic laser lithotripsy: a review of dusting vs fragmentation with extraction, J. Endourol., 32, 1, pp. 1–6 (2018).

(31) B. Winship, D. Wollin, E. Carlos, C. Peters, J. Li, R. Terry, et al., The rise and fall of high temperatures during ureteroscopic holmium laser lithotripsy, J. Endourol., 33, 10, pp. 794-799 (2019).

(32) S.J. Xia, et al., Thulium laser versus standard transurethral resection of the prostate: a randomized prospective trial Eur. Urol. 53, 382–389 (2008).

(33) E.D. Jasen, T.G. van Leeuwen, M. Motamedi, C. Borst, A.J. Welch, Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation, Lasers Surg. Med., 14, 3, pp. 258–268 (1994).

(34) S.D. Jackson, A. Lauto, Diode-pumped fiber lasers: a new clinical tool? Lasers Surg. Med., 30, pp. 184–190 (2002).

(35) J.A. Harrington, Infrared fibers, and their applications, SPIE (2004).

(36) L.A. Hardy, V. Vinnichenko, N.M. Fried, High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: Ablation rate and fragment size studies, Lasers Surg. Med., 51, pp. 522–530 (2019).

(37) S. Poletajew, B. Braticevici, A. Brisuda, et al., Timing of radical cystectomy in Central Europe – multicenter study on factors influencing the time from diagnosis to radical treatment of bladder cancer patients, Cent. European J. Urol., 68, 1, pp. 9-14 (2015).

(38) A. Roggan, U. Bindig, W. Wäsche, F. Zgoda, Action Mechanisms of Laser Radiation in Biological Tissues (eds. H.P. Berlien, G.J. Muller), 87, Springer, 2003.

(39) G.M. Hale, M.R. Querry, Optical constants of water in the 200 nm to 200 μm wavelength region, Appl. Opt., 12, pp. 555–563 (1973).

(40) R.L. Blackmon, P.B. Irby, N.M. Fried, Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects, J. Biomed. Opt., 16, 071403 (2011).

(41) R. de La Floratos, Lasers in urology, BJU Int., 1999, 84, pp. 204–211.

(42) J. Lee, T.R.J. Gianduzzo, Advances in laser technology in urology, Urol. Clin. N. Am., 2009, 36, pp. 189–198.

(43) V. Cauni, B. Mihai, F. Tanase, I. Ciofu, C. Persu, Percutaneous Nephrolithtotomy Lithotripsy: The role of Ballistic and Ultrasonic Energy, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 66, 3, pp. 207–209, (2021).

(44) R.H. Shin, et al., Evaluation of a novel ball tip holmium laser fiber: impact on ureteroscope performance and fragmentation efficiency, J. Endourol., 30, pp. 189–194 (2016).

(45) K.F. Chan, et al., Erbium:YAG laser lithotripsy mechanism, J. Urol., 168, pp. 436–441 (2002).

(46) H. Lee, H.W. Kang, J.M. Teichman, J. Oh, A.J. Welch, Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy, Lasers Surg. Med., 38, pp. 39–51 (2006).

(47) N.M. Fried, Potential applications of the erbium:YAG laser in endourology, J. Endourol., 15, pp. 889–894 (2001).

(48) J. Qiu, et al., Comparison of fluoride and sapphire optical fibers for Er:YAG laser lithotripsy, J. Biophotonics, 3, pp. 277–283 (2010).

(49) J. Raif, M. Vardi, O. Nahlieli, I. Gannot, An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary gland stones, Lasers Surg. Med., 38, pp. 580–587 (2006).

(50) J. Qui, et al., Femtosecond laser lithotripsy: feasibility and ablation mechanism, J. Biomed. Opt., 15, 028001 (2010).

Downloads

Published

12.03.2022

Issue

Section

Génie biomédical | Biomedical Engineering

How to Cite

APPLICATION OF LASER TECHNOLOGY IN URINARY STONE TREATMENT. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(1), 85-89. https://journal.iem.pub.ro/rrst-ee/article/view/109