CONTRÔLE AVANCÉ POUR LES SYSTÈMES DE CONDITIONNEURS DE QUALITÉ D'ALIMENTATION PHOTOVOLTAÏQUES UNIFIÉS : UNE APPROCHE DE SIMULATION

Auteurs

  • LAKHDAR SAIHI Unité de Recherche en Énergies Renouvelables en Milieu Saharien URERMS, Centre de Développement des Énergies Renouvelables CDER, 01000 Adrar, Alegria. Author
  • BRAHIM BERBAOUI Department of Electrical and Computer Engineering, University of Draia Ahemed Adrar, 01000 Adrar, Algeria. Author

DOI :

https://doi.org/10.59277/RRST-EE.2025.4.18

Mots-clés :

Conditionneur de qualité d'alimentation unifié (UPQC), Théorie P-Q, Système photovoltaïque (PV), Contrôle en mode glissant (SMC), Systèmes d'inférence neuro-floue adaptative (ANFIS)

Résumé

Cet article présente la conception et l'évaluation d'un conditionneur de qualité d'énergie photovoltaïque triphasé unifié (PV-UPQC), intégrant des compensateurs en série et en dérivation via une liaison CC partagée. Le système combine la production décentralisée et le filtrage actif de la puissance, où le compensateur shunt collecte l'énergie photovoltaïque et compense les courants harmoniques et la puissance réactive provenant des charges non linéaires. L'identification des harmoniques s'appuie sur la théorie p-q, avec des expériences menées sous un ensoleillement réel dans la région d'Adrar, en Algérie. Le filtre de puissance active shunt (ShAPF) compense les harmoniques et la puissance réactive tout en optimisant l'extraction de l'énergie photovoltaïque au point de puissance maximale (MPP). Les systèmes d'inférence neuro-flous adaptatifs (ANFIS) et le contrôle en mode glissant (SMC) sont combinés pour réduire les vibrations et améliorer l'extraction d'énergie photovoltaïque. Les simulations montrent que le SMC/ANFIS surpasse le SMC conventionnel.

Références

(1) S. Devassy and B. Singh, Design and performance analysis of three-phase solar PV integrated UPQC, IEEE Transactions on Industry Applications, 54, 1, pp. 73–81 (2017).

(2) R. Thangella, S.R. Yarlagadda, and J. Sanam, Optimal power quality improvement in a hybrid fuzzy-sliding mode MPPT control-based solar PV and BESS with UPQC, International Journal of Dynamics and Control, 11, 4, pp. 1823–1843 (2023).

(3) A. Amirullah, A. Ananda, O. Penangsang, and A. Soeprijanto, Load active power transfer enhancement using UPQC-PV-BES system with fuzzy logic controller, International Journal of Intelligent Engineering and Systems, 13, 2, pp. 329–349 (2020).

(4) R. Sekar, M. Arunachalam, and K. Subramanian, Fuzzy-proportional integral derivative controller with interactive decision Tree, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 4, pp. 395–400 (2024).

(5) A. Moghassemi, S. Padmanaban, V.K. Ramachandaramurthy, M. Mitolo, and M. Benbouzid, A novel solar photovoltaic fed TransZSI-DVR for power quality improvement of grid-connected PV systems, IEEE Access, 9, pp. 7263–7279 (2020).

(6) B. Deffaf, F. Hamoudi, and N. Debdouche, Sliding mode control of a shunt active filter-comparative analysis with conventional PI control, In 19th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1422–1427 (2022).

(7) M.T. Benchouia, I. Ghadbane, A. Golea, K. Srairi, and M. Benbouzid, Design and implementation of sliding mode and PI controllers-based control for three-phase shunt active power filter, Energy Procedia, 50, pp. 504–511 (2014).

(8) J. Morales, L.G. de Vicuna, R. Guzman, M. Castilla, and J. Miret, Modeling and sliding mode control for three-phase active power filters using the vector operation technique, IEEE Transactions on Industrial Electronics, 65, 9, pp. 6828–6838 (2018).

(9) Y. Chu, J. Fei, and S. Hou, Dynamic global proportional integral derivative sliding mode control using radial basis function neural compensator for three-phase active power filter, Transactions of the Institute of Measurement and Control, 40, 12, pp. 3549–3559 (2018).

(10) Y. Chu, S. Hou, and J. Fei, Continuous terminal sliding mode control using novel fuzzy neural network for active power filter, Control Engineering Practice, 109, 104735 (2021).

(11) R. Kumar, Fuzzy particle swarm optimization control algorithm implementation in photovoltaic integrated shunt active power filter for power quality improvement using hardware-in-the-loop, Sustainable Energy Technologies and Assessments, 50, 101820 (2022).

(12) S.L.K. Bharathi and S. Selvaperumal, MGWO-PI controller for enhanced power flow compensation using unified power quality conditioner in wind turbine squirrel cage induction generator, Microprocessors and Microsystems, 76, 103080 (2020).

(13) A. Chebabhi, M.K. Fellah, A. Kessal, and M.F. Benkhoris, Comparative study of reference currents and DC bus voltage control for Three-Phase Four-Wire Four-Leg SAPF to compensate harmonics and reactive power with 3D SVM, ISA transactions, 57, pp. 360–372 (2015).

(13) K. Sozanski and P. Szczesniak, Advanced control algorithm for three-phase shunt active power filter using sliding DFT, Energies, 16, 3, 1453 (2023).

(14) E. Samavati and H.R. Mohammadi, Active harmonic compensation and stability improvement in high-power grid-connected inverters using unified power quality conditioner, International Journal of Industrial Electronics Control and Optimization, 6, 3, pp. 193–204 (2023).

(15) S. Chennai, Novel shunt active power filter based on nine-Level NPC inverter using MC-LSPWM modulation strategy, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 1, pp. 21–26 (2024).

(16) H. Usman and N. Magaji, Simulation of shunt active power filter based fuzzy logic controller for minimization of total harmonic distortion, International Journal of Applied and Advanced Engineering Research, 2, 1 (2023).

(17) L. Saihi, F. Ferroudji, K. Roummani, K. Koussa, Y. Bakou, and B. Berbaoui, Improved harmonic mitigation with a SAP filter connected to a renewable energy source using a novel ANN algorithm, In 2023 Second International Conference on Energy Transition and Security (ICETS), pp. 1–6 (2023).

(18) L. Saihi and B. Berbaoui, Mitigation of low voltage electrical network pollution using a two-level PAPF controlled by the ANN-PQ algorithm, In 2023 International Conference on Electrical Engineering and Advanced Technology (ICEEAT), 1, pp. 1–5 (2023).

(19) R. Rouabhi, A. Herizi, S. Djeriou, and A. Zemmit, Hybrid type-1 and 2 fuzzy sliding mode control of the induction motor, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 2, pp. 147–152 (2024).

(20) L. Saihi and B. Berbaoui, Sliding mode of second-order control based on super-twisting ANFIS algorithm of doubly fed induction generator in wind turbine systems with real variable speeds, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 47, 2, pp. 473–490 (2023).

(21) S. Latreche, A. Bouafassa, B. Babes, and O. Aissa, Efficient DSP-based real-time implementation of ANFIS regulator for single-phase power factor corrector, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 2, pp. 141–146 (2024).

(22) R. Bhavani, N.R. Prabha, and M.A. Jawahar, An ultra-capacitor integrated dynamic voltage restorer for power quality enhancement in a three-phase distribution system using an adaptive neuro-fuzzy interference system controller, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 4, pp. 383–388 (2022).

(23) S. Lakhdar, F. Ferroudji, K. Roummani, and K. Koussa, Enhanced sensor-less control of DFIG-based generators using hybrid MRAS-ANN observer and PSO parameter optimization, In 14th International Renewable Energy Congress (IREC), pp. 1–6 (2023).

(24) I. Oulimar, K. Bouchouicha, N. Bailek, and M. Bellaoui, Statistical study of global solar radiation in the Algerian desert: a case study of Adrar town, Theoretical and Applied Climatology, pp. 1–12 (2024).

Téléchargements

Publiée

2025-11-17

Numéro

Rubrique

Électronique et transmission de l’information | Electronics & Information Technology

Comment citer

CONTRÔLE AVANCÉ POUR LES SYSTÈMES DE CONDITIONNEURS DE QUALITÉ D’ALIMENTATION PHOTOVOLTAÏQUES UNIFIÉS : UNE APPROCHE DE SIMULATION. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(4), 537-542. https://doi.org/10.59277/RRST-EE.2025.4.18