ESTIMATION OF FLUX LINKAGE OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING KALMAN FILTER

Auteurs

  • PRITISH KUMAR GHOSH Training & Placement Officer, AIEM, WB, India. Author
  • ALOK KUMAR SHRIVASTA Department of Electrical Engineering, JISCE, India. Author
  • RAJU BASAK Department of Electrical Engineering, Techno India University, India. Author

DOI :

https://doi.org/10.59277/RRST-EE.2025.2.1

Mots-clés :

Moteur synchrone à aimants permanents (PMSM), Modulation de largeur d'impulsion vectorielle spatiale (SVPWM), Filtre de Kalman, Liaison de flux, Méthode des éléments finis (FEM)

Résumé

The real flux linkage value on the rotor side of a permanent magnet synchronous motor (PMSM) determines the field control performance of the motor. The flux linkage in the rotor side is taken into consideration as a constant parameter for half of the full order observer and stator flux estimate. However, realistically speaking, flux linkage can vary across a large range. A new set of variables is established for internal permanent magnet synchronous motors, or IPMSMs. A third order Kalman filter is developed by taking into account a set of additional variables as well as the state variables of the rotor flux linkage. By using Ld=Lq, the flux linkage of the rotor side for a surface-mounted PMSM may be shown. The model is simulated using FEM to evaluate the effectiveness of the proposed approach. The computed findings indicate the precision of the flux linkage on the rotor side.

Références

(1) A. Mora, J.J. Orellana, R. Cardenas, Model Predictive Torque Control for Torque Ripple Compensation in Variable-Speed PMSMs, IEEE Trans. Ind. Electron., 63, 7, pp. 4584–4592 (2016).

(2) T. Nguyen, M.S. Rafaq, H.H. Choi, J.W. Jung, A Model Reference Adaptive Control-Based Speed Controller for a Surface-Mounted Permanent Magnet Synchronous Motor Drive, IEEE Trans. Ind. Electron., 65, 12, pp. 9399–9409 (2018).

(3) D.K. Hong, J.Y. Lee, B.C. Woo, D.-H. Park, B.U. Nam, Investigating a Direct-Drive PM Type Synchronous Machine for Turret Application Using Optimization, IEEE Trans. Magn., 48, 11, pp. 4491-4494 (2012).

(4) E.K. Kim, J. Kim, H.T. Nguyen, H.H. Choi, J.W. Jung, Compensation of Parameter Uncertainty Using an Adaptive Sliding Mode Control Strategy for an Interior Permanent Magnet Synchronous Motor Drive, IEEE Access, 7, pp. 11913–11923 (2019).

(5) G. Hong, T. Wei, X. Ding, Multi-Objective Optimal Design of Permanent Magnet Synchronous Motor for High Efficiency and High Dynamic Performance, IEEE Access, 6, pp. 23568–23581 (2018).

(6) G. Foo, S. Sayeef, M.F. Rahman, Low-Speed and Standstill Operation of a Sensorless Direct Torque and Flux Controlled IPM Synchronous Motor Drive, IEEE Trans. Energy Conversion, 25, 1, pp. 25–33 (2010).

(7) H. Sira-Ramirez, J. Linares-Flores, C. Garcia-Rodriguez, M.A. Contreras-Ordaz, On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach, IEEE Trans. Control Syst. Technol., 22, 5, pp. 2056–2063 (2014).

(8) W. Hu, C. Ruan, H. Nan, D. Sun, Simplified Modulation Scheme for Open-End Winding PMSM System with Common DC Bus Under Open-Phase Fault Based on Circulating Current Suppression, IEEE Trans. Power Electron., 35, 1, pp. 10–14 (2020).

(9) J.L. Flores, C.G. Rodriguez, H.S. Ramirez, O.D.R. Cardenas, Robust Backstepping Tracking Controller for Low-Speed PMSM Positioning System: Design, Analysis, and Implementation, IEEE Trans. Ind. Informat., 11, 5, pp. 1130–1141 (2015).

(10) J. Shi, F. Chai, X. Li, S. Cheng, Study of the Number of Slots/Pole Combinations for Low Speed High Torque Permanent Magnet Synchronous Motors, Proc. Int. Conf. Electr. Mach. Syst., pp. 1–3, (2011).

(11) K. Xiong, C.L. Wei, L.D. Liu, Robust Extended Kalman Filtering for Nonlinear System with Stochastic Uncertainties, IEEE Trans on Systems, Man, and Cybernetics—Part A: Systems and Humans, 40, 2, pp. 399-405 (2010).

(12) L. Castellini, M. Carmignano, M. d’Andrea, M. Villani, Brushless PM Actuator for Metal Bending Machine, Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), pp. 2644–2649 (2013).

(13) Q. Fei, Y. Deng, H. Li, J. Liu, M. Shao, Speed Ripple Minimization of Permanent Magnet Synchronous Motor Based on Model Predictive and Iterative Learning Controls, IEEE Access, 7, pp. 31791–31800, (2019).

(14) S. Wu, J. Zhang, A Robust Adaptive Control for Permanent Magnet Synchronous Motor Subject to Parameter Uncertainties and Input Saturations, J. Elect. Eng. Technol., 13, 5, pp. 2125–2133 (2018).

(15) S.U. Chung, S.H. Moon, D.J. Kim, J.M. Kim, Development of a 20–Pole–24–Slot SPMSM with Consequent Pole Rotor for In-Wheel Direct Drive, IEEE Trans. Ind. Electron., 63, 1, pp. 302-309 (2016).

(16) W. Sen, Z. Bingyi, F. Guihong, Research of Low-Speed and Direct-Drive PMSM for New Oil Drilling Mud Pump, Proc. Int. Conf. Electr. Mach. Syst., pp. 1–5, (2011).

(17) W.H. Chen, J. Yang, L. Guo, S. Li, Disturbance-Observer-Based Control and Related Methods—An Overview, IEEE Trans. Ind. Electron., 63, 2, pp. 1083–1095, (2016).

(18) X. Ge, Z.Q. Zhu, J. Li, J. Chen, A Spoke-Type IPM Machine with Novel Alternate Airspace Barriers and Reduction of Unipolar Leakage Flux by Step-Staggered Rotor, IEEE Trans. Ind. Appl., 52, 6, pp. 4789–4797 (2016).

(19) H. Zhan, Z. Zhu, M. Odavic, Analysis and Suppression of Zero Sequence Circulating Current in Open Winding PMSM Drives with Common DC Bus, IEEE Trans. Ind., 53, 4, pp. 3609–3620 (2017).

(20) B. Zhu, C. Tan, M. Farshadnia, Postfault Zero-Sequence Current Injection for Open-Circuit Diode/Switch Failure in Open-End Winding PMSM Machines, IEEE Trans. Ind. Electron., 66, 7, pp. 5124–5132 (2019).

(21) Z. Xu, M.F. Rahman, Comparison of a Sliding Observer and a Kalman Filter for Direct-Torque-Controlled IPM Synchronous Motor Drives, IEEE Trans. Industrial Electronics, 59, 11, pp. 4179-4188 (2012).

(22) B. Raju, P.A. Kumar, Cost-Effective Design of Three-Phase Induction Motor: An Optimization Approach, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 4, pp. 461–466 (2022).

(23) S. Medjmadj, D. Diallo, A. Arias, Mechanical Sensor Fault-Tolerant Controller in PMSM Drive: Experimental Evaluation of Observers and Signal Injection for Position Estimation, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 2, pp. 77–83 (2021).

(24) B. Mokhtari, Enhancement Ripples of a Direct Torque Control Applied to a Permanent Magnet Synchronous Motor by Using a Four-Level Multicellular Inverter and a New Reduced Switching Table, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 2, pp. 207–212 (2024).

(25) N. Ali, A.W. Alam, M. Pervaiz, J. Iqbal, Nonlinear Adaptive Backstepping Control of Permanent Magnet Synchronous Motor, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 1, pp. 15–20 (2021).

(26) A. Boulayoune, A. Oubelaid, A. Chibah, Comparative Study of Inner and Outer Rotor Flux Reversal Permanent Magnet Machine for Direct Drive Wind Turbine, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 2, pp. 123–128 (2024).

Téléchargements

Publiée

2025-06-14

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

ESTIMATION OF FLUX LINKAGE OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING KALMAN FILTER. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(2), 159-164. https://doi.org/10.59277/RRST-EE.2025.2.1