DYNAMIC BEHAVIOR ANALYSIS OF LOAD FREQUENCY CONTROL IN POWER SYSTEMS WITH HYBRID POWER PLANTS

Auteurs

DOI :

https://doi.org/10.59277/RRST-EE.2025.3.7

Mots-clés :

Système électrique interconnecté, Centrale à vapeur, Centrale à gaz, Centrale hydroélectrique, Contrôle de la fréquence de charge

Résumé

Dans les systèmes électriques, le maintien d'une fréquence quasi constante est essentiel à un fonctionnement stable. La boucle de régulation secondaire joue un rôle crucial dans la régulation de la fréquence du système, garantissant son maintien à sa valeur nominale ou proche de celle-ci. De plus, cette boucle de régulation est responsable du maintien des échanges d'énergie programmés entre les zones de régulation interconnectées via les lignes de raccordement. Cette étude se concentre sur l'analyse et la simulation de la réponse dynamique des systèmes électriques interconnectés dans diverses configurations. Les zones de systèmes électriques examinées comprennent les centrales à vapeur, hydroélectriques et à gaz. Des simulations MATLAB sont réalisées sur des modèles de systèmes électriques à deux et trois zones. Les résultats de la simulation temporelle sont ensuite évalués par l'analyse des valeurs propres de la matrice du système dans différentes conditions d'exploitation. Les résultats indiquent qu'après une variation brutale de la demande de charge dans des zones isolées, les centrales à gaz présentent la plus faible déviation de fréquence (statisme). En revanche, les centrales hydroélectriques présentent la plus forte chute de fréquence. De plus, les centrales à gaz présentent moins de variations en réponse aux variations de charge que les deux autres types de sources de production.

Références

(1) G. Shahgholian, M. R. Moradian, A. Fathollahi, Droop control strategy in inverter-based microgrids: A brief review on analysis and application in islanded mode of operation, IET Renewable Power Generation, 19, 1(2025).

(2) M. Gholami, M. Mallaki, Increase flexibility and improve resilience in smart microgrids by coordinating storage resources and distributed generation during contingencies, Journal of Southern Communication Engineering, 12, 45, pp. 45–60 (2022).

(3) P. Casati, M. Moner-Girona, S.I. Khaleel, S. Szabo, G. Nhamo, Clean energy access as an enabler for social development: A multidimensional analysis for Sub-Saharan Africa, Energy for Sustainable Development, 72, pp. 114–126 (2023).

(4) S.A. Rasaki, C. Liu, C. Lao, H. Zhang, Z. Chen, The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: A comprehensive review, Renewable and Sustainable Energy Reviews, 148, Article Number: 111369 (2021).

(5) G. Shahgholian, S.M.A. Zanjani, A study of voltage sag in distribution system and evaluation of the effect of wind farm equipped with doubly-fed induction generator, Revue Roumaine des Sciences Techniques, 68, 3, pp. 271–276 (2023).

(6) Y. Jin, P. Behrens, A. Tukker, L. Scherer, Water use of electricity technologies: A global meta-analysis. Renewable and Sustainable Energy Reviews, 115, Article Number: 109391 (2019).

(7) M. Babaei, M. Jahangiri, F. Raeiszadeh, G. R. Aboutalebi, A. Jafari, A. Nariman, The feasibility of using solar heating in the Yazd hospital: A case study, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 15, 2, pp. 17–28 (2023).

(8) S.A. Ardeh, M. Tabrizian, H. Shahmirzad, Coordinated operation of gas-electricity integrated distribution network with CCHP and renewable energy sources, Journal of Novel Researches on Smart Power Systems, 11, 3, pp. 43–53 (2022).

(9) M.J.B. Kabeyi, O.A. Olanrewaju, The levelized cost of energy and modifications for use in electricity generation planning, Energy Reports, 9, 9, pp. 495–534 (2023).

(10) A. Boulayoune, A. Oubelaid, A. Chibah, Comparative study of inner and outer rotor flux reversal permanent magnet machine for direct drive wind turbine, Revue Roumaine des Sciences Techniques, 69, 2 (2024).

(11) W. Srisuwan, W. Sa-Ngiamvibool, Optimal controllers design for isolated hybrid wind-diesel power system using bee algorithm, Revue Roumaine des Sciences Techniques, 64, 4, pp. 341–348 (2019).

(12) B. Li, S. Hu, Q. Zhong, K. Shi, S. Zhong, Dynamic memory event-triggered proportional-integral-based H∞ load frequency control for multi-area wind power systems, Applied Mathematics and Computation, 453, Article Number: 128070 (2023).

(13) H. Erol, S. Ayasun, Gain-phase margins based stability analysis of time delayed hybrid load frequency control system, Revue Roumaine des Sciences Techniques, 66, 2, pp. 119–124 (2021).

(14) Y. Jia, Z. Y. Dong, C. Sun, K. Meng, Cooperation-based distributed economic MPC for economic load dispatch and load frequency control of interconnected power systems, IEEE Transactions on Power Systems, 34, 5, pp. 3964–3966 (2019).

(15) T. Ali, S.A. Malik, I.A. Hameed, A. Daraz, H. Mujlid, A.T. Azar, Load frequency control and automatic voltage regulation in a multi-area interconnected power system using nature-inspired computation-based control methodology, Sustainability, 14, Article Number: 12162 (2022).

(16) A.O. Aluko, R. Carpanen, D.G. Dorrell, E.E. Ojo, Robust state estimation method for adaptive load frequency control of interconnected power system in a restructured environment, IEEE Systems Journal, 15, 4, pp. 5046–5056 (2021).

(17) R. Rajan, F.M. Fernandez, Small-signal stability analysis and frequency regulation strategy for photovoltaic sources in interconnected power systems, Electrical Engineering, 103, pp. 3005–3021 (2021).

(18) G. Q. Zeng, X.Q. Xie, M.R. Chen, An adaptive model predictive load frequency control method for multi-area interconnected power systems with photovoltaic generations, Energies, 10, Article Number: 1840 (2017).

(19) M. Yang, W. Chunsheng, H. Yukun, L. Zijian, Y. Caixin, H. Shuhang, Load frequency control of photovoltaic generation-integrated multi-area interconnected power systems based on double equivalent-input-disturbance controllers, Energies, 13, 22, Article Number: 6103 (2020).

(20) N. Hakimuddin, I. Nasiruddin, T.S. Bhatti, Y. Arya, Optimal automatic generation control with hydro, thermal, gas, and wind power plants in 2-area interconnected power system, Electric Power Components and Systems, 48, 6–7, pp. 558–571 (2020).

(21) Y. Zheng, J. Tao, Q. Sun, H. Sun, Z. Chen, M. Sun, Deep reinforcement learning based active disturbance rejection load frequency control of multi-area interconnected power systems with renewable energy, Journal of Franklin Institute, 360, 17, pp. 13908–13931 (2023).

(22) B.M. Patre, P.S. Londhe, R.M. Nagarale, Fuzzy sliding mode control for spatial control of large nuclear reactor, IEEE Transactions on Nuclear Science, 62, 5, pp. 2255–2265 (2015).

(23) C.N.S. Kalyan, C.V. Suresh, Higher order degree of freedom controller for load frequency control of multi-area interconnected power system with time delays, Global Transitions Proceedings, 3, 1, pp. 332–337 (2022).

(24) F. Zhu, X. Zhou, Y. Zhang, D. Xu, J. Fu, A load frequency control strategy based on disturbance reconstruction for multi-area interconnected power system with hybrid energy storage system, Energy Reports, 7, pp. 8849–8857 (2021).

(25) G. Chen, Z. Li, Z. Zhang, S. Li, An improved ACO algorithm optimized fuzzy PID controller for load frequency control in multi-area interconnected power systems, IEEE Access, 8, pp. 6429–6447 (2020).

Téléchargements

Publiée

2025-08-30

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

DYNAMIC BEHAVIOR ANALYSIS OF LOAD FREQUENCY CONTROL IN POWER SYSTEMS WITH HYBRID POWER PLANTS. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(3), 325-330. https://doi.org/10.59277/RRST-EE.2025.3.7