ÉTUDE EXPÉRIMENTALE D'UNE MOISSONNEUSE PIÉZOÉLECTRIQUE VIBRANTE SUR UN COMPRESSEUR À VIS INDUSTRIEL
DOI :
https://doi.org/10.59277/RRST-EE.2025.1.2Mots-clés :
Récolteuse piézoélectrique, Vibrations forcées, Fréquence de résonance, Conversion électromécanique, Banc d'essai, Compresseur industrielRésumé
Cet article présente des travaux expérimentaux préliminaires sur un compresseur bivis afin de valider et de démontrer la récupération d'énergie piézoélectrique. Ces expériences ciblent un environnement industriel pertinent : un banc d'essai pour compresseurs d'air et de gaz industriels. Ce travail n'a été possible qu'après des études antérieures évaluant le comportement du récupérateur piézoélectrique, en tenant compte de facteurs essentiels. Dans notre cas, une température de fonctionnement élevée peut influencer négativement la réponse piézoélectrique, voire endommager le matériau ; elle doit donc être évitée autant que possible. La fréquence de résonance du récupérateur piézoélectrique doit être ajustée en temps réel afin de correspondre au plus près à la fréquence de vibration cible du rotor mâle, d'environ 83 Hz. Nous avons obtenu une réponse en tension crête d'environ 4 VCA et un courant efficace maximal mesuré d'environ 515 µA. La puissance efficace, calculée à environ 1,5 mW, a été jugée très satisfaisante pour un dispositif piézoélectrique.
Références
(1) N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy, 80, p. 105567 (2021)
(2) A.A. Hashim, K.I. Mahmoud, H.M. Ridha, Geometry and shape optimization of piezoelectric cantilever energy harvester using COMSOL multiphysics software, Int. Rev. Appl. Sci. Eng., 12, 2, pp. 103–110 (2021).
(3) S.A. Kouritem, K.T. Mohamed, A.M.N. Elmekawy, H. Elgamal, Optimization methodology to target a vibration source natural frequency of energy harvesting cantilever, in Ninth International Conference on Advances in Civil, Structural and Mechanical Engineering - ACSM 2019, London, United Kingdom, pp. 19–25 (2019).
(4) P. Peralta-Braz, M.M. Alamdari, R. O. Ruiz, E. Atroshchenko, M. Hassan, Design optimisation of piezoelectric energy harvesters for bridge infrastructure, Mech. Syst. Signal Process., 205, pp. 110823 (2023).
(5) D. Benasciutti, L. Moro, S. Zelenika, E. Brusa, Vibration energy scavenging via piezoelectric bimorphs of optimized shapes, Microsyst. Technol., 16, 5, pp. 657–668 (2009).
(6) V.Jr. Caetano, M.A Savi. Multimodal pizza-shaped piezoelectric vibration-based energy harvesters, J. Intell. Mater. Syst. Struct., 32, 20, pp. 2505–2528 (2021).
(7) M. Edla, Y.Y. Lim, D. Mikio, R.V. Padilla, A single-stage rectifier-less boost converter circuit for piezoelectric energy harvesting systems, IEEE Trans. Energy Convers., 37, 1, pp. 505–514 (2022).
(8) A. Ounissi, A. Kaddouri, M. Aggoun, R. Abdessemed, Second order sliding mode controllers of micropositioning stage piezoelectric actuator with Colman-Hodgdon model parameters, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 1, pp. 41–46 (2022).
(9) T.H. Van, T.L. Van, T. Thi, M. Duong, G. Sava, Improving the output of DC-DC converter by phase shift full bridge applied to renewable energy, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 66, 3, pp. 175–180 (2021).
(10) A. Subramanian, J. Raman, N. Pachaivannan, An efficient hybrid converter for DC-based renewable energy nanogrid systems, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 4, pp. 225–230 (2021).
(11) S. Gao, X. Dai, Z. Liu, G. Tian, S. Yuan, A wireless piezoelectric sensor network for distributed structural health monitoring, IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Orlando, FL, USA, pp. 1–6 (2015).
(12) L. Wang, L. Zhao, G. Luo, Y. Zhao, P. Yang, Z. Jiang, R. Maeda, System level design of wireless sensor node powered by piezoelectric vibration energy harvesting, Sens. Actuators A: Phys., 310, pp. 112039 (2020).
(13) M.A.M. El-Bendary, A. Haggag, Optimum piezo-electric based energy harvesting for low-power wireless networks with power complexity considerations, Wirel. Pers. Commun., 133, 4, pp. 2355–2377 (2023).
(14) F. Huet, V. Boitier, L. Seguier, Tunable piezoelectric vibration energy harvester with supercapacitors for WSN in an industrial environment, IEEE Sens. J., 22, 15, pp. 15373–15384, (2022).
(15) K. Farinholt, N. Brown, J. Siegel, J. McQuown, R. Humphris, Energy harvesting to power embedded condition monitoring hardware, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA (2015).
(16) S. Chamanian, S. Baghaee, H. Ulusan, O. Zorlu, E. Uysal-Biyikoglu, H. Kulah, Implementation of energy-neutral operation on vibration energy harvesting WSN, IEEE Sens. J., 19, 8, pp. 3092–3099 (2019).
(17) N. Aboulfotoh, J. Twiefel, A study on important issues for estimating the effectiveness of the proposed piezoelectric energy harvesters under volume constraints, Appl. Sci., 8, 7, pp. 1075 (2018).
(18) C.C. Yang, N.F.R. Bin Noor Hanafi, N.H.H. Bt Mohamad Hanif, A.F. Ismail, and H.-H. Chang, A novel non-intrusive vibration energy harvesting method for air conditioning compressor unit, Sustain., 13, 18, p. 10300 (2021).
(19) C.I. Borzea, C.D. Comeagă, A. Săvescu, Boosting the electric output of a cantilever piezoelectric harvester by tip curvature blocking elements, in 8th European Conference on Renewable Energy Systems (ECRES), Istanbul, Turkey, pp. 344–350 (2020).
(20) C.I. Borzea, C.D. Comeagă, M.N. Uddin, R.D. Hriţcu, V.L. Ringheanu, Improving the electric response of a cantilever piezoelectric energy harvester by constraining tip curvature, IOP Conference Series: Materials Science and Engineering, 997, The 9th International Conference on Advanced Concepts in Mechanical Engineering - ACME, Iași, Romania, pp. 012038 (2020).
(21) C. Borzea, D. Comeagă, Adjusting the resonant frequency of a cantilever piezoelectric harvester, Sci. J. Turbo, 5, 2, pp. 11–18 (2018).
(22) C. Borzea, D. Comeagă, A. Stoicescu, C. Nechifor, Piezoelectric harvester performance analysis for vibrations harnessing, UPB Sci. Bull. C: Electr. Eng. Comput. Sci., 81, 3, pp. 237–248 (2019).
(23) C. Borzea, A. Morega, D. Comeagă, Y. Veli, Temperature influence on the performances of a pzt-5h piezoelectric harvester, 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, pp. 1–6 (2021).
(24) C. Borzea, V. Petrescu, I. Vlăducă, M. Roman, G. Badea, Potential of twin-screw compressor as vibration source for energy harvesting applications, Electr. Mach. Mater. Drives - Present and Trends, 17, 1, pp. 90–95 (2021).
(25) C. Săvescu, V. Petrescu, D. Comeagă, I. Vlăducă, C. Nechifor, F. Niculescu, Vibration analysis of a twin-screw compressor as potential source for piezoelectric energy harvesting, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 3, pp. 253–258 (2023).
(26) C. Săvescu, D. Comeagă, A. Morega, Y. Veli, Experimental tests with piezoelectric harvester for tuning resonant frequency to vibrating source, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 4, pp. 457-460 (2022).
(27) *** Midé Technology, PPA PRODUCTS Datasheet & User Manual.
(28) F. Niculescu, A. Săvescu, A. Mitru, Transmitting data over the network using an OPC server, MATEC Web of Conferences, 210 (22nd International Conference on Circuits, Systems, Communications and Computers (CSCC), Majorca, Spain, pp. 03002 (2018).
(29) I.C. Mustață, L. Bacali, M. Bucur, R.M. Ciuceanu, A. Ioanid, A. Ștefan, The evolution of industry 4.0 and its potential impact on industrial engineering and management education, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 1, pp. 73–78 (2022).
(30) S. Paker, I. Ekmekci, Electrical hazards in industrial facilities and evaluation of the measures, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 2, pp. 133–138 (2022).
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2025

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.