ÉVALUATION DE LA VARIABILITÉ DE TENSION DANS LES SYSTÈMES ÉLECTRIQUES

Auteurs

DOI :

https://doi.org/10.59277/RRST-EE.2024.2.9

Mots-clés :

Modèles de transfert d'énergie, La mesure, Valeur de tension quadratique moyenne (RMS), Métrique, Taux de signalement élevés, Variabilité des signaux

Résumé

Les processus dans les grands systèmes énergétiques présentent une grande variabilité en raison de la nature stochastique de la production et de l’utilisation de l’électricité. Cependant, le contrôle du transfert d'énergie vise à atteindre un fonctionnement en régime permanent, qui est principalement décrit par des signaux entièrement identifiables par un ensemble fini de paramètres. Une partie du système de contrôle est le processus d'information fourni par le biais de mesures. Dans cet article, nous analysons l'impact du système de mesure déployé pour rapporter le paramètre RMS du signal de tension sur la qualité de l'information dans les réseaux de distribution BT. Le fonctionnement de tels réseaux est très stochastique et les modèles choisis basés sur la moyenne ne sont pas toujours appropriés ; par conséquent, nous proposons d'appliquer une métrique statistique, c'est-à-dire le coefficient de variation de l'écart quadratique moyen CV (RMSD).

Références

(1) A. Riepnieks, H. Kirkham, An introduction to goodness of fit for PMU parameter estimation, IEEE Transactions on Power Delivery, 32, 5, pp. 2238–2245 (October 2017).

(2) ***IEC 61000-4-30:2015+AMD1:2021 IEC 61000-4-30 ed3.0, Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods (2021).

(3) A. Ioanid, D. Palade, The role of distribution system operators in the decentralized power system, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 1, pp. 33–38 (2024).

(4) M. Gavrilaș, R. Toma, Flexible alternating current transmission system optimization in the context of large disturbance voltage stability, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 1, pp. 21–26 (2021).

(5) G. Shahgholian, S.M.A. Zanjani, A study of voltage sag in distribution system and evaluation of the effect of wind farm equipped with doubly-fed induction generator, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 3, pp. 271–276, (2023).

(6) D. Macii, D. Petri, Rapid voltage change detection: limits of the IEC standard approach and possible solutions, IEEE Transactions on Instrumentation and Measurement, 69, 2, pp. 382–392 (2020).

(7) A. R. Toma, A.M. Dumitrescu, M.M. Albu, Impact of measurement set-up on RVC-like event detection, IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, pp. 1–5 (2016).

(8) D. Macii, D. Petri, On the detection of Rapid Voltage Change (RVC) events for power quality monitoring, IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, pp. 1–6 (2017).

(9) I. Löfgren, E. Gutierrez-Ballesteros, S. Rönnberg, Modified method of detecting rapid voltage changes in a medium voltage network, 20th International Conference on Harmonics & Quality of Power (ICHQP), Naples, Italy, pp. 1–6 (2022).

(10) G. Singh, C. Miller, W. Howe, Assessment of best practices for mitigation of rapid voltage change due to transformer inrush, IEEE Milan PowerTech, Milan, Italy, pp. 1–6 (2019).

(11) A. Bhuyan, B.K. Panigrahi, S. Pati, H. Sahoo, R.K. Pradhan, Contingency analysis of low voltage dc microgrid, International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, pp. 1108–1111 (2020).

(12) M.I. Sudrajat, N. Moonen, H. Bergsma, R. Bijman, F. Leferink, Evaluating rapid voltage changes and its propagation effect using multipoint measurement technique, International Symposium on Electromagnetic Compatibility, EMC EUROPE, Rome, Italy, pp. 1–6 (2020).

(13) D. Macii, D. Petri, Fast detection of rapid voltage change events through dynamic RMS voltage tracking, IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, pp. 1–6 (2018).

(14) J. Barros, J.J. Gutiérrez, M. de Apráiz, P. Saiz, R.I. Diego, A. Lazkano, Rapid voltage changes in power system networks and their effect on flicker, IEEE Transactions on Power Delivery, 31, 1, pp. 262–270 (2016).

(15) J. Barros, M. de Apráiz, R.I. Diego, J.J. Gutiérrez, P. Saiz, I. Azcarate, Minimum requirements for rapid voltage changes regulation based on their effect on flicker, IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Liverpool, UK, pp. 1–5 (2017).

(16) T. Garn, C. Biedermann, B. Engel, Parameters of rapid voltage changes and their effects on power quality, Power and Energy Student Summit (PESS), Online, pp. 1–6 (2021).

(17) O. Florencias-Oliveros, J.J. Gonzalez-de-la-Rosa, Continuous and non-intrusive energy monitoring challenge: smart choices in difficult situations, IEEE 13th International Workshop on Applied Measurements for Power Systems (AMPS), Bern, Switzerland, pp. 1–6 (2023).

(18) A. P. Brîncoveanu, E. Fiorentis, A.M. Dumitrescu, M.M. Albu, Signal model adequacy indicator for measurements in LV grids, IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Kuala Lumpur, Malaysia, pp. 1–6 (2023).

(19) ***ELSPEC— Where Power Meets Quality, Available online: https://www.elspec-ltd.com/metering- protection/power-quality-analyzers/g4400-power-quality-analyzer/ (accessed on 13 July 2022).

(20) A.P. Brîncoveanu, R. Plămănescu, A.M. Dumitrescu, M.M. Albu Assessment of power profiles in LV distribution grids, 8th International Symposium on Electrical and Electronics Engineering (ISEEE), Galati, Romania, pp. 69–74 (2023).

(21) A.P. Brîncoveanu, E. Fiorentis, A.M. Dumitrescu, M.M. Albu, Assessing frequency variability using long term high reporting rate measurements, International Conference on Electromechanical and Energy Systems (SIELMEN), Craiova, Romania, pp. 1–6 (2023).

(22) R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy, Intern. Journal of Forecasting, 22, 4, pp. 679–688 (2006).

(23) P. Bharadwaj, J. Agrawal, R.I. Jaddivada, M. Zhang, M. Ilic, Measurement-based validation of energy-space modelling in multi-energy systems, 52nd North American Power Symposium (NAPS) (2021).

(24) M. Sanduleac, L. Pons, G. Fiorentino, R. Pop, M.M. Albu, The unbundled smart meter concept in a synchro-SCADA framework, IEEE International Instrumentation and Measurement Technology Conference Proc., Taipei, Taiwan, pp. 1–5 (2016).

(25) R. Plamanescu et al., Open-source platform for integrating high-reporting rate information using FIWARE technology, IEEE 13th International Workshop on Applied Measurements for Power Systems (AMPS), Bern, Switzerland, pp. 1–6 (2023).

(26) ***SOCOMEC, Socomec – innovative power solutions, three-phase power monitoring system, countians e23 and e24. https://www.victronenergy.com/

(27) ***Raspberry Pi Foundation, Raspberry Pi 3 model b, https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

(28) ***IEC 62056-1-0:2014, Electricity metering data exchange – the DLMS/COSEM suite – part 1-0: Smart metering standardization framework” (2014).

Téléchargements

Publiée

2024-07-07

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

ÉVALUATION DE LA VARIABILITÉ DE TENSION DANS LES SYSTÈMES ÉLECTRIQUES. (2024). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 69(2), 171-176. https://doi.org/10.59277/RRST-EE.2024.2.9