MODÉLISATION D'UNE COURBE DE POLARISATION DE PILE À COMBUSTIBLE PEM PAR POLYNOMIAUX D'ORDRE FAIBLE POUR LES ALGORITHMES DE CALCUL DE PUISSANCE DE SORTIE

Auteurs

  • OLEKSIY KUZNYETSOV Institute of Power Engineering and Control Systems, Lviv Polytechnic National University, 12 S. Bandera Str., 79013, Lviv, Ukraine. Author https://orcid.org/0000-0002-0516-5109
  • IHOR BILYAKOVSKYY Department of Electromechanics and Electronics, Hetman Petro Sahaidachnyi National Army Academy, 32 Heroiv Maidanu Str., 79026, Lviv, Ukraine. Author https://orcid.org/0000-0002-8052-7894

DOI :

https://doi.org/10.59277/RRST-EE.2024.2.22

Mots-clés :

Pile à combustible à membrane échangeuse de protons (PEM), Estimation des paramètres, Modèle d'ordre inférieur, Extraction de puissance maximale, Gestion de l'énergie

Résumé

Les algorithmes de contrôle et d'énergie qui régissent le fonctionnement d'une pile à combustible PEM au sein d'un système énergétique doivent tenir compte des phénomènes non linéaires dans la pile ; elle est souvent capturée par la courbe de polarisation. Cependant, les approches de modélisation utilisées pour les études de simulation pourraient être plus adaptées aux algorithmes mentionnés ci-dessus en raison de leur charge de calcul plus élevée. Cela conduit au développement d’approches simplifiées. Notre étude se concentre sur les algorithmes utilisés pour le calcul de la puissance de sortie des piles à combustible. Beaucoup d’entre eux sont orientés vers le fonctionnement à puissance maximale de la cellule. Nous proposons que la représentation de la pile à combustible pour les algorithmes puisse être utilisée sous forme polynomiale d'ordre inférieur, réduisant ainsi la charge de calcul par rapport aux autres approches. Pour la prédiction du point de puissance maximale, nous proposons d'utiliser la forme tronquée des données d'entrée de la courbe de polarisation (en ignorant la région de perte d'activation). Notre étude a démontré que, sur la base des mêmes données d'entrée et des mêmes commandes d'ajustement de courbe MATLAB, le polynôme d'ordre 3 fournit un RMSE comparable de 3,5 à 3,9 pour l'approximation de la courbe de puissance par rapport à 3,9 pour la représentation polynomiale d'ordre 5. La valeur du PowerPoint maximum est obtenue avec une erreur relative de 1,3 % avec le polynôme d'ordre 2 en utilisant les données d'entrée tronquées, contre 1,2 % pour la représentation polynomiale d'ordre 5.

Références

(1) Y.A. Zúñiga-Ventura et al., Nonlinear voltage regulation strategy for a fuel cell/supercapacitor power source system, IECON 2018 - 44th Ann. Conf. IEEE Ind. Electron. Soc., pp. 2373–2378 (2018).

(2) J.T. Pukrushpan, H. Peng, A.G. Stefanopoulou, Control-oriented modeling and analysis for automotive fuel cell systems, J. Dyn. Syst., Meas. Contr., 126, 1, pp. 14-25 (2004).

(3) J. Kim, S. Lee, S. Srinivasan, C.E. Chamberlin, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc., 142, 8, pp. 2670–2674 (1995).

(4) A. Shahin et al., High voltage ratio dc-dc converter for fuel-cell applications, IEEE Trans. Ind. Electron., 57, 12, pp. 3944–3955 (2010).

(5) G. Squadrito et al., An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour, J. Appl. Electrochem., 29, pp. 1449–1455 (1999).

(6) ***Hydrogen roadmap Europe: A sustainable pathway for the European energy transition, 2019.

(7) T. Jamal et al., Fuelling the future: An in-depth review of recent trends, challenges and opportunities of hydrogen fuel cell for a sustainable hydrogen economy, Energy Rep., 10, pp. 2103-2127 (2023).

(8) M.A. Aminudin et al., An overview: Current progress on hydrogen fuel cell vehicles, Int. J. Hydrogen Energy, 48, 11, pp. 4371-4388 (2023).

(9) M. Waseem et al., Fuel cell-based hybrid electric vehicles: An integrated review of current status, key challenges, recommended policies, and future prospects, Green Energy Intell. Transp., 2, 6, 100121 (2023).

(10) V. Martini, F. Mocera, A. Somà, Numerical investigation of a fuel cell-powered agricultural tractor, Energies, 15, 23, 8818 (2022).

(11) X. Wang, J. Zhu, M. Han, Industrial Development status and prospects of the marine fuel cell: A review, J. Marine Sci. Eng., 11, 2, 238 (2023).

(12) H. Peng et al., Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench, Appl. Energy, 282, 116152 (2021).

(13) S. Quan et al., Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation, Appl. Energy, 304, 117845 (2021).

(14) T. Teng, X. Zhang, H. Dong, Q. Xue, A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle, Int. J. Hydrogen Energy, 45, 39, pp. 20293-20303 (2020).

(15) N. Zidane, S.L. Belaid, A new fuzzy logic solution for energy management of hybrid photovoltaic/battery/hydrogen system, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg, 67, 1, 21-26 (2022).

(16) X. Wei et al., Co-optimization method of speed planning and energy management for fuel cell vehicles through signalized intersections, J. Pow. Sources, 518, 230598 (2022).

(17) B. Gou, W. Na, B. Diong, Fuel Cells. Dynamic Modeling and Control with Power Electronics Applications, 2nd ed., CRC Press, 2016.

(18) G.R. Molaeimanesh, F. Torabi, Fuel Cell Modeling and Simulation: From Microscale to Macroscale, Elsevier, 2022.

(19) A. Benaissa, B. Rabhi, M.F. Benkhoris, L. Zellouma, Linear quadratic controller for two-interleaved boost converter associated with PEMFC emulator, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg, 66, 2, 125-130 (2021).

(20) J.F Z. Zerhouni, M. Telidjane, Direct connection of a proton exchange membrane fuel cell to a load and modelling, (in French), Rev. Roum. Sci. Techn. – Électrotechn. et Énerg, 60, 4, 387–396 (2015).

(21) A. Kravos et al., Thermodynamically consistent reduced dimensionality electrochemical model for proton exchange membrane fuel cell performance modelling and control, J. Pow. Sources, 454, 227930 (2020)

(22) M. Derbeli, O. Barambones, M.Y. Silaa, C. Napole, Real-time implementation of a new MPPT control method for a DC-DC boost converter used in a PEM fuel cell power system, Actuators, 9, 4, 105 (2020).

(23) D. Hao et al., An improved empirical fuel cell polarization curve model based on review analysis, Int. J. Chem. Eng., 2016, pp. 1–10 (2016).

(24) A. Saadi, M. Becherif, A. Aboubou, M.Y. Ayad, Comparison of proton exchange membrane fuel cell static models, Ren. Energy, 56, 64-71 (2013).

(25) J.C. Amphlett et al., Performance modeling of the Ballard-Mark-IV solid polymer electrolyte fuel cell, I. Mechanistic model development, J. Electrochem. Soc., 142, 1, 1-8 (1995).

(26) Y.A. Zúñiga-Ventura et al., Adaptive backstepping control for a fuel cell/boost converter system, IEEE J. Emerg. Select. Topics Pow. Electron., 6, 2, pp. 686-695 (2018).

(27) K. Ettihir, M.H. Cano, L. Boulon, K. Agbossou, Design of an adaptive EMS for fuel cell vehicles, Int. J. Hydrogen Energy, 42, 2, pp. 1481-1489 (2017).

(28) A. Abaza et al., Optimal estimation of proton exchange membrane fuel cells parameter based on coyote optimization algorithm, Appl. Sci., 11, 5, 2052 (2021).

(29) A. Shaheen, R. El-Sehiemy, A. El-Fergany, A. Ginidi, Fuel-cell parameter estimation based on improved gorilla troops technique, Sci. Rep., 13, 8685 (2023).

(30) A.M. Agwa et al., MPPT of PEM fuel cell using PI-PD controller based on golden jackal optimization algorithm, Biomimetics, 8, 5, 426 (2023).

(31) N. Karami, R. Outbib, N. Moubayed, Maximum power point tracking with reactant flow optimization of proton exchange membrane fuel cell, J. Fuel Cell Sci. Techn., 10, 5, 051008, (2013).

(32) Y. Wang, X. Yang, Z. Sun, Z. Chen, A systematic review of system modeling and control strategy of proton exchange membrane fuel cell, Energy Rev., 3, 1, 100054 (2024).

(33) L. Fan, X. Ma, Maximum power point tracking of PEMFC based on hybrid artificial bee colony algorithm with fuzzy control, Sci Rep 12, 4316 (2022).

(34) P. Bayat, A. Baghramian, A novel self-tuning type-2 fuzzy maximum power point tracking technique for efficiency enhancement of fuel cell based battery chargers, Int. J. Hydrogen Energy, 45, 43, 23275-23293 (2020)

(35) A.W. Leedy, K.M. Miller, E. Rafferty, M.A. Karanja, Approximation of fuel cell characteristic curves for maximum power point tracking, 2023 IEEE 2nd Ind. Electron. Soc. Ann. On-Line Conf. (ONCON), SC, USA, 1-6 (2023).

(36) R.F. Mann et al., Development and application of a generalized steady-state electrochemical model for a PEM fuel cell, J. Pow. Sources, 86, 1–2, 173-180 (2000).

Téléchargements

Publiée

2024-07-07

Numéro

Rubrique

Termotechnique et termoénergétique

Comment citer

MODÉLISATION D’UNE COURBE DE POLARISATION DE PILE À COMBUSTIBLE PEM PAR POLYNOMIAUX D’ORDRE FAIBLE POUR LES ALGORITHMES DE CALCUL DE PUISSANCE DE SORTIE. (2024). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 69(2), 249-254. https://doi.org/10.59277/RRST-EE.2024.2.22