BENCHMARK DE LA PLATEFORME DE L'INTERNET DES OBJETS : UNE ÉVALUATION DE L'INTELLIGENCE ARTIFICIELLE
DOI :
https://doi.org/10.59277/RRST-EE.2024.1.17Mots-clés :
Internet des objets (IoT), Intelligence artificielle (IA), Hardware, Plateformes, Ordinateur monocarte (SBC), RéférenceRésumé
L'Internet des objets (IoT) représente un concept technologique transformateur qui s'intègre de manière transparente à Internet dans tous les secteurs. L'intelligence artificielle (IA) offre à l'IoT de nouvelles capacités utilisées pour analyser les données en temps réel et prendre des décisions éclairées. Il existe un large éventail d’appareils IoT dotés de différentes capacités de calcul et d’accélérateurs d’IA qui doivent être comparés. L'article actuel propose une comparaison entre deux ordinateurs monocarte à l'aide d'un benchmark d'IA existant.
Références
(1) A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of Things for Smart Cities, IEEE Internet of Things Journal, 1, 1, pp. 22–32 (Feb. 2014).
(2) A.C. Gheorghe, H. Andrei, E. Diaconu, G.C Seritan, B. Enache, smart system for standby power consumption reduction of household equipment, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 4, p. 413–418 (2023).
(3) M. Soori, B. Arezoo, R. Dastres, Internet of things for smart factories in industry 4.0, a review, Internet of Things and Cyber-Physical Systems, 3, pp. 192–204 (2023).
(4) A. Rejeb, K. Rejeb, S. Simske, H. Treiblmaier, S. Zailani, The big picture on the internet of things and the smart city: a review of what we know and what we need to know, Internet of Things, 19, 100565 (2022).
(5) M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, R. Kaliaperumal. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture, 12, 10, pp. 1745 (2022).
(6) S.J. Muthiya, S. Anaimuthu, J.A. Dhanraj, N. Selvaraju, G. Manikanta, C. Dineshkumar Application of Internet of Things (IoT) in the Automotive Industry. in Integration of Mechanical and Manufacturing Engineering with IoT (eds R. Rajasekar, C. Moganapriya, P. Sathish Kumar, M. Harikrishna Kumar) (2023).
(7) A. Nauman, Y.A. Qadri, M. Amjad, Y.B. Zikria, M.K. Afzal, S.W. Kim, Multimedia Internet of Things: a comprehensive survey, IEEE Access, 8, pp. 8202–8250 (2020).
(8) G. Yashodha, P.R. Pameela Rani, A. Lavanya, V. Sathyavathy Role of Artificial Intelligence in the Internet of Things – A Review. IOP Conference Series: Materials Science and Engineering, 1055 (2021).
(9) A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu, L. Xu, L. Van Gool, Ai benchmark: All about deep learning on smartphones in 2019 arXiv preprint arXiv:1910.06663 (2019).
(10) V. Reddi et al. Mlperf inference benchmark. 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 446–459 (2019).
(11) Alibaba, Ai matrix https://aimatrix.ai/en-us/, Alibaba (2018).
(12) R. Adolf, S. Rama, B. Reagen, G.Y. Wei, D. Brooks, Fathom: reference workloads for modern deep learning methods in IEEE International Symposium on Workload Characterization (IISWC) (2016).
(13) ***EEMBC, Introducing the EEMBC MLMARK benchmark https://www.eembc.org/mlmark/index.php,
Embedded Microprocessor Benchmark Consortium (2023).
(14) C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis, K. Olukotun, C. R´e, M. Zaharia, DAWNBench: an end-to-end deep learning benchmark and competition, NeurIPS ML Systems Workshop (2017).
(15) ***Baidu-research, DeepBench: benchmarking deep learning operations on different hardware, https://github.com/baidu-research/DeepBench (2023).
(16) T. Tan, G. Cao, FastVA: deep learning video analytics through edge processing and NPU, Mobile IEEE INFOCOM, IEEE Conference on Computer Communications, Toronto, ON, Canada, pp. 1947–1956 (2020).
(17) X. Qi, C. Liu, Enabling deep learning on IoT edge: approaches and evaluation, IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, pp. 367–372 (2018).
(18) A. Shahid and M. Mushtaq, A survey comparing specialized hardware and evolution, TPUs for Neural Networks, 23rd IEEE International Multitopic Conference (INMIC), Bahawalpur, Pakistan, pp. 1–6 (2020).
(19) ***Google Cloud tensor processing units (TPUs), https://cloud.google.com/tpu (2023).
(20) A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient convolutional neural networks for mobile vision applications. ArXiv, abs/1704.04861 (2017).
(21) C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the Inception Architecture for Computer Vision, IEEE Conference on Computer Vision, and Pattern Recognition (CVPR), pp. 2818–2826 (2016).
(22) C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, Inception-ResNet and the impact of residual connections on learning, ArXiv, abs/1602.07261 (2016).
(23) K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, European Conference on Computer Vision (2016).
(24) K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, CoRR, abs/1409.1556 (2014).
(25) C. Dong, C.C. Loy, K. He, X. Tang. Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, pp. 295–307 (2014).
(26) J. Kim, J.K. Lee, K.M. Lee., Accurate image super-resolution using very deep convolutional networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016).
(27) C. Ledig, L. Theis, F. Huszár, J. Caballero, A.P. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi, Photo-realistic single image super-resolution using a generative adversarial network, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114 (2016).
(28) A.D. Ignatov, N. Kobyshev, K. Vanhoey, R. Timofte, L.V. Gool, DSLR-quality photos on mobile devices with deep convolutional networks. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3297–3320 (2017).
(29) O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation, Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, 9351, Springer, Cham (2015).
(30) T. Park, M.Y. Liu, T.C. Wang, J.Y. Zhu, semantic image synthesis with spatially-adaptive normalization, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 2332–2341 (2019).
(31) H. Zhao, X. Qi, X. Shen, J. Shi, J. Jia, ICNet for real-time semantic segmentation on high-resolution images, V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss, (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, 11207, Springer, Cham (2018).
(32) H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2016).
(33) G. Papandreou, L. Chen, K.P. Murphy, A.L. Yuille, Weakly- and semi-supervised learning of a DCNN for semantic image segmentation. ArXiv, abs/1502.02734 (2015).
(34) A.V. Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel recurrent neural networks, International Conference on Machine Learning (2016).
(35) S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation, 9, pp. 1735-80, 10.1162/neco.1997.9.8.1735 (1997).
(36) Y. Wu et al., Google's neural machine translation system: bridging the gap between human and machine translation, ArXiv, abs/1609.08144 (2016).
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2024
Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.