HARDWARE IMPLEMENTATION OF FUZZY MAXIMUM POWER POINT TRACKING THROUGH SLIDING MODE CURRENT CONTROL FOR PHOTOVOLTAIC SYSTEMS

Auteurs

  • ABDELBASET LAIB LEPCI laboratory, Electronics dept. Setif-1 University, Route Bejaia, Sétif, Algeria Author
  • FATEH KRIM LEPCI laboratory, Electronics dept. Setif-1 University, Route Bejaia, Sétif, Algeria Author
  • BILLEL TALBI LEPCI laboratory, Electronics dept. Setif-1 University, Route Bejaia, Sétif, Algeria Author
  • HAMZA FEROURA LEPCI laboratory, Electronics dept. Setif-1 University, Route Bejaia, Sétif, Algeria Author
  • ABDESSLAM BELAOUT LEPCI laboratory, Electronics dept. Setif-1 University, Route Bejaia, Sétif, Algeria Author

Mots-clés :

Photovoltaic energy, Maximum power point tracking (MPPT), Fuzzy logic maximum power point (Fuzzy MPPT), Sliding mode current controller (SMCC)

Résumé

This paper deals with an intelligent-robust control method for maximum power point tracking (MPPT) of photovoltaic (PV) system under irradiation conditions change. The proposed MPPT scheme incorporates an intelligent fuzzy controller with a robust sliding mode current controller to enhance the MPP pursuit performance (speed and accuracy tracking, steady state power oscillations). To prove the performance improvement of the proposed scheme, a comparison is performed experimentally with both conventional IncCon algorithm and conventional incremental through sliding mode current control under different irradiance levels. The results obtained through the developed prototype based on dSPACE DS1104 board demonstrate that this method provides better performance and more robustness to the MPPT in terms of power oscillations, convergence speed to the optimal point and accuracy tracking following irradiation changes.

Références

(1) A. Laib, F. Krim, B. Talbi, H. Feroura, A. Kihal, Decoupled active and reactive power control strategy of grid-connected six-level diode- clamped inverters based on finite set model predictive control for photovoltaic application, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 64, 1, pp 51–56 (2019).

(2) B. Talbi, F. Krim, T. Rekioua, S. Mekhilef, A. Laib, A. Belaout, A high- performance control scheme for photovoltaic pumping system under sudden irradiance and load changes, Solar Energy, 159, pp. 353–368 (2018).

(3) P. S. Sikder, N. Pal, Incremental conductance based maximum power point tracking controller using different buck-boost converter for solar photovoltaic system, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 62, 3, pp. 269-275, 2017.

(4) A. Safari, S. Mekhilef, Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter, IEEE transactions on industrial electronics, 58, 4, pp. 1154–1161 (2011).

(5) M. A. Ozcelik, A. S. Yilmaz, Modification of the incremental conductance algorithm in grid connected photovoltaic systems, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 61, 2, pp. 164- 168 (2016).

(6) M. A. A. M. Zainuri, M. A. M. Radzi, A. C. Soh, N. A. Rahim, Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter, IET Renewable Power Generation, 8, 2, pp. 183–194 (2013).

(7) A.Attou, A. Massoum, M. Chadli, Comparison study of two tracking methods for photovoltaic systems, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 60, 2, pp. 205–214 (2015).

(8) H. A. Azzeddine, M. Tioursi, D. Chaouch, B. Khiari, An offline trained artificial neural network to predict a photovoltaic panel maximumower point. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 61, 3, pp. 255–257 (2016).

(9) B. Bendib, H. Belmili, F. Krim, A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems, Renew. Sustain. Energy Rev., 45, pp. 637– 648 (2015).

(10) H. Boumaaraf, A. Talha, O. Bouhali, A three-phase NPC grid- connected inverter for photovoltaic applications using neural network MPPT, Renewable and Sustainable Energy Reviews, 49, pp. 1171–1179 (2015).

(11) A. Chaouachi, R. M. Kamel, K. Nagasaka, A novel multi-model neuro- fuzzy-based MPPT for three-phase grid-connected photovoltaic system, Solar energy, 84, 12, pp. 2219–2229 (2010).

(12) A. Harrag, S. Messalti, Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller, Renewable and Sustainable Energy Reviews, 49, pp. 1247–1260 (2015).

(13) F. M. de Oliveira, S. A. O. da Silva, F. R. Durand, L. P. Sampaio, V. D. Bacon, L. B. Campanhol, Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electronics, 9, 6, pp. 1180–1191 (2016).

(14) N. Karami, N. Moubayed, R. Outbib, General review and classification of different MPPT Techniques, Renewable and Sustainable Energy Reviews, 68, pp. 1–18 (2017).

(15) M. Nabipour, M. Razaz, S. G. Seifossadat, S. S. Mortazavi, A new MPPT scheme based on a novel fuzzy approach. Renewable and Sustainable Energy Reviews, 74, pp. 1147–1169 (2017).

(16) S. K. Kollimalla, M. K. Mishra, A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance, IEEE Transactions on Energy Conversion, 29, 3, pp. 602–610 (2014).

(17) A. Laib, F. Krim, B. Talbi, A. Sahli, A predictive control scheme for large-scale grid-connected PV system using high-level NPC inverter. Arabian Journal for Science and Engineering, 45, 3, pp. 1685–1701 (2020).

(18) A. Kihal, F. Krim, B. Talbi, A. Laib, A. Sahli, A Robust Control of Two-Stage Grid-Tied PV Systems Employing Integral Sliding Mode Theory, Energies, 11, 10, p. 2791 (2018).

(19) B. Talbi, F. Krim, A. Laib, A. Sahli, H. Feroura, Sensorless predictive current controlled DC-DC boost converter for PV MPPT applications, IEEE 7th International Renewable and Sustainable Energy Conference (IRSEC), Agadir, Morocco, 2019.

(20) B. Talbi, F. Krim, T. Rekioua, A. Laib, H. Feroura, Design and hardware validation of modified P&O algorithm by fuzzy logic approach based on model predictive control for MPPT of PV systems, J. Renew. Sustain. Energy, 9, 4, p. 043503 (2017).

(21) A. Laib, F. Krim, B. Talbi, A. Kihal, H. Feroura, Improved Control of Three Phase Dual-Stage Grid-Connected PV System Based on a Predictive Control Strategy. Journal of Control Engineering and Applied Informatics, 20, 3, pp. 12-23, 2019.

(22) E. Bianconi, J. Calvente, R. Giral, E. Mamarelis, G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, M. Vitelli, A fast current-based MPPT technique employing sliding mode control. IEEE Trans Ind Electron, 60, 3, pp. 1168-1178, 2013.

(23) V. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electro- Mechanical Systems, CRC Press Taylor & Francis Group, 2nd ed., USA, pp. 221–342, 2009.

(24) Z. Chen, W. Gao, J. Hu, X. Ye, Closed-loop analysis and cascade control of a nonminimum phase boost converter, IEEE Transactions on Power Electronics, 26, 4, pp. 1237–1252 (2011).

(25) O. Kükrer, H. Kömürcügil, A. Doganalp, Sliding Mode Control of Single-Phase UPS Inverters Using a Three-Level Hysteresis Switching Function, Proceeding of the annual conference of the IEEE Industrial Electronics society (IECON’06), Paris, France. 2006.

(26) A. Belaout, F. Krim, B. Talbi, H. Feroura, A. Laib, S. Bouyahia, A. Arabi, Development of real time emulator for control and diagnosis purpose of Photovoltaic Generator, IEEE 6th International Conference on Systems and Control (ICSC). Batna, Algeria, 2017.

(27) A. F. Ebrahim, S. M. W. Ahmed, S. E. Elmasry, O. A. Mohammed, Implementation of a PV emulator using programmable DC power supply, IEEE SoutheastCon 2015. Fort Lauderdale, Florida, USA, 2015.

Téléchargements

Publiée

2021-07-02

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

HARDWARE IMPLEMENTATION OF FUZZY MAXIMUM POWER POINT TRACKING THROUGH SLIDING MODE CURRENT CONTROL FOR PHOTOVOLTAIC SYSTEMS. (2021). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 66(2), 91-96. https://journal.iem.pub.ro/rrst-ee/article/view/54