RÉGLAGE DU RÉGULATEUR DE VITESSE PI DANS LE CONTRÔLE DIRECT DU COUPLE D'UN MOTEUR À INDUCTION À DOUBLE ÉTOILE BASÉ SUR DES ALGORITHMES GÉNÉTIQUES ET DES SCHÉMAS NEURO-FUZZY
DOI :
https://doi.org/10.59277/RRST-EE.2024.1.2Mots-clés :
Machine à induction double étoile (DSIM), Systèmes d'inférence neuro-flou adaptatifs (ANFIS), Algorithme génétique (GA), Contrôle direct du couple (DTC), Contrôleur proportionnel intégral (PI), OnduleurRésumé
Grâce aux caractéristiques positives de la machine à double stator (DSIM), à sa grande fiabilité et aux ondulations réduites du couple du rotor, elle est devenue l'une des machines multiphasées les plus importantes incluses dans les applications industrielles. Cet article vise à appliquer les deux techniques d'intelligence artificielle représentées par les systèmes d'inférence neuro-flou adaptatifs (ANFIS) et l'algorithme génétique (GA) de contrôle direct du couple (DTC) du DSIM pour améliorer les performances de la machine. La capacité d'apprentissage et le parallélisme des caractéristiques de fonctionnement ont permis d'exploiter le GA pour contrôler la machine au lieu d'utiliser le contrôleur proportionnel intégral (PI). La fréquence de commutation fixe obtenue, donnée avec le tableau de sélection vectorielle et l'hystérésis, a permis l'inclusion de la technique ANFIS dans la stratégie DTC. Des onduleurs à deux niveaux sont inclus pour alimenter le DSIM. Plusieurs résultats prouvent que les deux techniques appliquées, ANFIS et GA, améliorent la qualité du couple et du flux électromagnétique ainsi que les réponses dynamiques du DSIM.
Références
(1) J. Henkenjohann, J. Andresen, A. Mertens, Comparison of magnetic noise compensation techniques for dual three-phase electrically excited synchronous machines, IEEE European Conference on Power Electronics and Applications, Germany, pp. 1–8 (2022).
(2) T. Hamidatou, A. Kouzou, A. Kaddouri, A. Mida, Fuzzy logic based speed control of indirect field oriented controlled doubly star open-end winding induction motor, IEEE International Conference on Energy Transition and Security, Algeria, pp. 1–6 (2023).
(3)R. Kianinezhad, S. Seyfossadat, V. Talaeizadeh, A. Hasani, A new DTC of six-phase induction machines using matrix converter, IEEE International Conference on Advances in Computational Tools for Engineering Applications, Lebanon, pp. 127–132 (2009).
(4) A. Ammar, A. Bourek, A. Benakcha, and T. Ameid, Sensorless stator field-oriented-direct torque control with SVM for induction motor based on MRAS and fuzzy logic regulation, IEEE International Conference on Systems and Control, Algeria, pp. 156–161 (2017).
(5) E. Benyoussef, S. Barkat, Direct Torque Control based on space vector modulation with balancing strategy of dual star induction motor, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg, 67, 1, pp. 15–20 (2022).
(6) F. Latrech, A. Ben Rhouma, A. Khedher, Dual star induction machine driven by direct torque control using sliding mode speed controller, IEEE International Conference on Advanced Systems and Emergent Technologies, Tunisia, pp. 1–5 (2023).
(7) S. Guedida, B. Tabbache, K. Nounou, M. Benbouzid, Direct torque control scheme for less harmonic currents and torque ripples for dual star induction motor, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg, 68, 4, pp. 331–338 (2023).
(8) A. Gerada, N. Ekneligoda, Direct torque control of induction motor using sliding-mode and fuzzy-logic methods, IEEE Power& Energy Society Innovative Smart Grid Technologies Conference, USA, pp. 1–5 (2018).
(9) A. Derbane, B. Tabbache, A. Ahriche, A fuzzy logic approach based direct torque control and five-leg voltage source inverter for electric vehicle power trains, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg, 66, 1, pp. 15–20 (2021).
(10) G. Boukhalfa, S. Belkacem, A. Chikhi and S. Benaggoune, Direct torque control of dual star induction motor using a fuzzy-PS hybrid approach, Applied Computing and Informatics, 18, 1/2, pp. 74–89 (2022).
(11) A. Mansuri, R. Maurya, S. Suhel, Reduction of common-mode voltage using zero voltage vectors in dual star asymmetrical induction motor, IEEE Trans. on E.C., 38, 1, pp. 230–238, (2023).
(12) K. Shah, A. Mansuri, R. Maurya, Modified sliding mode observer-based direct torque control of six-phase asymmetric induction motor drive, Chinese Journal of Electrical Engineering, 9, 3, pp. 111–123 (2023).
(13) R. Bojoi, F. Farina, G. Profumo, A. Tenconi, Direct torque control for dual three-phase induction motor drives, IEEE Transactions on Industry Applications, 41, 6, pp. 433–448 (2016).
(14) X. Wang, M. Elbuluk, Neural network control of machines using genetic algorithm training, 31st IAS Annual Meeting, IAS '96, 3, pp. 1733–1740 (1996).
(15) A. Chikhi, M. Djarallah, K. Chikhi, A comparative study of field-oriented control and direct-torque control of induction motors using an adaptive flux observer, SJEE, 7, 1, pp. 41–55 (2010).
(16) K. Makhloufi, S. Zegnoun, A. Omari, I. Bousserhane, Adaptive neuro-fuzzy-slip control of a linear synchronous machine, Rev. Roum. Sci. Techn.–Électrotechn. et Énerg, 67, 4, pp. 425–431 (2022).
(17) M. Zegai, M. Bendjebbar, K. Belhadri, M. Doumbia, B. Hamane, P. Koumba, Direct torque control of induction motor based on artificial neural networks speed control using MRAS and neural PID controller, IEEE Electrical Power and Energy Conference (EPEC), Canada, pp. 320–325 (2015).
(18) I. Abdulrahman, G. Radman, Wide-area based adaptive neuro-fuzzy SVC controller for damping interarea oscillations controller CSPR, IEEE Transaction Canadian Journal of Electrical and Computer Engineering, 41, 3, pp. 133–144 (2018).
(19) Y-nan. Guo, D-wei. Gong, Z. Xue, Hybrid optimization method based on genetic algorithm and cultural algorithm, IEEE, Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian China, pp. 3471–3475 (June 21-23, 2006).
(20) A. El Idrissi, N. Zahid, M. Jedra, Optimized DTC by genetic speed controller and inverter based neural networks SVM for PMSM, IEEE, 2nd International Conference on Innovative Computing Technology, INTECH, pp. 392–395 (2012).
(21) L. Booker, D. Goldberg and J. Holland, Classifier systems and genetic algorithms, Elsevier Science Publishers B.V, 40, pp. 235–282 (1989).
(22) S. Mahfud, A. Derouich, N. El Ouanjli, M. Mossa, S. Motahhir, M. El Mahfoud, S. Al-Sumaiti, Comparative study between cost functions of genetic algorithm used in direct torque control of a doubly fed induction motor, Applied Sciences, 12, 17, 8717 (2022).
(23) G.H. Boukhalfa, S. Belkacem, A. Chikhi, M. Bouhentala, Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor, Journal of Central South University, 29, pp. 3974–3985 (2023).
(24) H. Lallouani, B. Saad, Performances of type 2 fuzzy logic control based on direct torque control for double star induction machine, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 65, 1-2, pp. 103–108 (2020).
(25) A. Wang, H. Zhang, J. Jiang, D. Jin, S. Zhu, Predictive direct torque control of permanent magnet synchronous motors using deadbeat torque and flux control, Journal of Power Electronics, 23, 2, pp. 264–273 (2023).
(26) R. Krohling, J. Rey, Design of optimal disturbance rejection PID controllers using genetic algorithms. IEEE Trans. Evol. Comput, 5, 1, pp. 78–82 (2001).
(27) P. Maciejewski, G. Iwanski, Study on direct torque control methods of a doubly fed induction machine working as a stand-alone dc voltage generator, IEEE Transactions on Energy Conversion, 36, 2, pp. 853–862 (2021).
(28) H.S. Che, E. Levi, M. Jones et al., Operation of a six-phase induction machine using series-connected machine side converters, IEEE Transactions on Industrial Electronics, 61, 1 164–176 (2014).
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2024
Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.