CARACTÉRISATION DES PROPRIÉTÉS ÉLECTRIQUES DE BIOSCAPTEURS IMPRIMÉS EN 3D AVEC DIFFÉRENTES GÉOMÉTRIES D'ÉLECTRODES

Auteurs

  • SORINA GOGONEAŢĂ Doctoral School of Electrical Engineering, University Politehnica of Bucharest, Bucharest, Romania Author
  • CĂTĂLIN MĂRCULESCU National Institute for Research and Development in Microtechnologies—IMT Bucharest, Romania Author
  • ALEXANDRU M. MOREGA Faculty of Electrical Engineering, University Politehnica of Bucharest, Romania; ”Gh. Mihoc – C. Iacob” Institute of Statistical Mathematics and Applied Mathematics, Romanian Academy, Bucharest, Romania Author

DOI :

https://doi.org/10.59277/RRST-EE.2023.68.2.21

Mots-clés :

Biocapteurs électrochimiques, Impression en 3D, Électrodes, Géométrie des électrodes, Spectroscopie d'impédance électrochimique

Résumé

Cette étude explore le processus de conception et de fabrication d'électrodes imprimées en 3D pour les biocapteurs électrochimiques qui détectent la concentration d'ions. Le procédé d'impression 3D permet de produire des électrodes aux formes complexes. Pour déterminer leurs performances, la voltamétrie cyclique et la spectroscopie d'impédance électrochimique ont été utilisées pour tester la capacité des électrodes à détecter les changements de concentration d'ions. Les résultats révèlent l'impact de la géométrie des électrodes sur les performances des biocapteurs.

Références

(1) J.I.A. Rashid, N.A. Yusof, The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review, Sens. Bio-Sensing Res., 16, pp. 19–31 (2017).

(2) H.A. Abdulbari, E.A.M. Basheer, Electrochemical biosensors: electrode development, materials, design, and fabrication, ChemBioEng Rev., 4, 2, pp. 92–105 (2017).

(3) J. Contreras, V. Perez-Gonzalez, M. Mata, O. Aguilar, 3D-printed hybrid-carbon-based electrodes for electroanalytical sensing applications, Electrochem. commun., 130, p. 107098 (2021).

(4) D. Dăscălescu, C. Apetrei, Development of a novel electrochemical biosensor based on organized mesoporous carbon and laccase for the detection of serotonin in food supplements, Chemosensors, 10, 9, p. 365 (2022).

(5) L.R. Silva, A. Gevaerd, L. Marcolino Jr., M. Bergamini, T. Almeida Silva, B. Janegitz, 3D-printed electrochemical devices for sensing and biosensing of biomarkers, Advances in Bioelectrochemistry, 2, pp. 121–136 (2022).

(6) H. Wei, X. Cauchy, I. O. Navas, Y. Abderrafai, K. Chizari, U. Sundararaj, Y. Liu, J. Leng, D. Therriault, Direct 3D printing of hybrid nanofiber-based nanocomposites for highly conductive and shape memory applications, ACS Appl. Mater. Interfaces, 11, 27, pp. 24523–24532 (2019).

(7) S.H.R. Sanei, D. Popescu, 3D-printed carbon fiber reinforced polymer composites: a systematic review, J. Compos. Sci., 4, 3, 98 (2020).

(8) C. Callanan, L. Hsu, A. McGee, Formulation and evaluation of carbon black 3D printing materials, OCEANS 2018 MTS/IEEE Charleston (2018).

(9) Y. Zheng, X. Huang, J. Chen, K. Wu, J. Wang, X. Zhang, A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications, Materials, 14, 14, p. 3911 (2021).

(10) Z.C. Kennedy, J.F. Christ, K.A. Evans, B.W. Arey, L.E. Sweet, M.G. Warner, R.L. Erikson, C. A. Barrett, 3D-printed poly (vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform, Nanoscale, 9, 17, pp. 5458–5466 (2017).

(11) H. Guo, R. Lv, S. Bai, Recent advances on 3D printing graphene-based composites, Nano Mater. Sci., 1, 2, pp. 101-115 (2019).

(12) L.R.G. Silva, J.S. Stefano, L.O. Orzari, L.C. Brazaca, E. Carrilho, L.H. Marcolino-Junior, M.F. Bergamini, R.A. A. Munoz, B.C. Janegitz, Electrochemical biosensor for SARS-CoV-2 cDNA detection using aups-modified 3D-printed graphene electrodes, Biosensors, 12, p. 622 (2022).

(13) C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Advanced carbon for flexible and wearable electronics, Adv. Mater., 31, 9, p. 1801072 (2019).

(14) C. Marculescu, P. Preda, T. Burinaru, E. Chiriac, B. Tincu, A. Matei, O. Brincoveanu, C. Pachiu, M. Avram, Customizable fabrication process for flexible carbon-based electrochemical biosensors, Chemosensors, 11, 4, p. 204 (2023).

(15) S. Handaja, H. Susanto, H. Hermawan, Electrical conductivity of carbon electrodes by mixing carbon rod and electrolyte paste of spent battery, Int. J. Renew. Energy Dev., 10, 2, pp. 221–227 (2021).

(16) S.J. Bharathi, S.H. Thilagar, V. Jayasurya, Design of electrochemical sensor and determining the peak current of ions in solution, IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), pp. 1–4, (2019).

(17) M. Xu, D. Obodo, V.K. Yadavalli, The design, fabrication, and applications of flexible biosensing devices, Biosens. Bioelectron., 124–125, pp. 96–114 (2019).

(18) A. Ambrosi, A. Bonanni, How 3D printing can boost advances in analytical and bioanalytical chemistry, Microchim. Acta, 188, 8, p. 265 (2021).

(19) B. Tincu, T. Burinaru, A.-M. Enciu, P. Preda, E. Chiriac, C. Marculescu, M. Avram, A. Avram, Vertical graphene-based biosensor for tumor cell dielectric signature evaluation, Micromachines, 13, 10, p. 1671 (2022).

(20) T. A. Burinaru, B. Tincu, M. Avram, P. Preda, A.-M. Enciu, E. Chiriac, C. Mărculescu, T. Constantin, M. Militaru, Electrochemical impedance spectroscopy based microfluidic biosensor for the detection of circulating tumor cells, Mater. Today Commun., 32, p. 104016 (2022).

Téléchargements

Publiée

2023-07-03

Numéro

Rubrique

Génie biomédicale

Comment citer

CARACTÉRISATION DES PROPRIÉTÉS ÉLECTRIQUES DE BIOSCAPTEURS IMPRIMÉS EN 3D AVEC DIFFÉRENTES GÉOMÉTRIES D’ÉLECTRODES. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(2), 241-246. https://doi.org/10.59277/RRST-EE.2023.68.2.21