APPROCHE DE RECHERCHE EXTRÊME APPLIQUÉE À UN SYSTÈME D'ALIMENTATION MULTI-MACHINE

Auteurs

  • AMEL ABBADI Electrical Engineering Department, Research Laboratory in Electrical Engineering and Automatic LREA, University of Médéa, Médéa Author
  • FETHIA HAMIDIA Electrical Engineering Department, Research Laboratory in Electrical Engineering and Automatic LREA, University of Médéa, Médéa Author
  • YOUNES CHIBA Faculty of Technology, Department of Mechanical Engineering, University of Médéa, Médéa Author

DOI :

https://doi.org/10.59277/

Mots-clés :

Voltage regulation, transient stability enhancement, adaptive controller, Multivariable sliding extremum seeking, Multimachines power system, Online gain adjustment

Résumé

L'objectif de ce travail est de construire une loi de commande de tension non linéaire adaptative en utilisant une technique multivariable de recherche d'extremum glissant (SES). Le schéma développé est appliqué pour assurer l'amélioration de la stabilité transitoire et la régulation de la tension du système d'alimentation multi-machines. Ce schéma de contrôle peut être décrit comme un contrôleur adaptatif intelligent. Il s'agit d'une méthode non basée sur un modèle puisque l'approche SES multivariable règle en ligne les gains du contrôleur de tension non linéaire sur la base de la minimisation d'une fonction de coût sans avoir besoin de connaître le modèle non linéaire du système d'alimentation multi-machines. Cette fonction de coût représente la performance du système. L'efficience et l'efficacité de l'approche proposée sont discutées à travers différents systèmes d'alimentation multi-machines sous différentes perturbations, conditions initiales et configurations de système.

Références

(1) P. Kundur, Power system stability and control. McGraw-Hill, New York, 1994.

(2) A. Abdelaziz, K. Keltuom, Power system stabilizer based on terminal sliding mode control, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg, 62, 1, pp. 98–102 (2017).

(3) K.R. Padiyar, Power System Stability and Dynamics, second edition, BS Publications, 2002.

(4) P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, Definition, and classification of power system stability. IEEE Trans. Power Syst., 19, 2, pp. 1387–1401(2004).

(5) H. Labdelaoui, F. Boudjema, D. Bouthetala, Multiobjective optimal design of dual-input power system stabilizer using genetic algorithms. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg, 62, 1, pp. 93–97 (2017).

(6) A.D. Falehi, M. Rostami, H. Mehrjardi, Transient Stability Analysis of Power System by Coordinated PSS-AVR design based on pso technique, Engineering, 3, 4, pp. 478-484 (2011).

(7) A. Zebar, A. Hamouda, K. Zehar, Impact of the location of fuzzy controlled static VAR compensator on the power system transient stability improvement in presence of distributed wind generation, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 60, 4, pp. 426–436, (2015)

(8) R. Yan, Z.Y. Dong, T.K. Saha, R. Majumder, Power system transient stability enhancement with an adaptive control scheme using backstepping design, IEEE Power Engineering Society General Meeting, June, pp. 1-8 (2007).

(9) S. Abazari, M. Heidari, N.R. Abjadi, Adaptive control design for a synchronous generator, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg. 59, 4, pp. 411-421(2014).

(10) S. Benahdouga, D. Boukhetala , F. Boudjema , Decentralized high order sliding mode control of multimachine power systems, Int. J. Electr Power Energy Syst., 43,1, pp.1081-1086 (2012 ).

(11) H. Huerta, A.G. Loukianov, J.M. Cañedo, Decentralized sliding mode block control of multimachine power systems, Int. J. Electr. Power Energy Syst. 32, 1, pp.1-11 (2010).

(12) C. Zhu, R. Zhou, Y. Wang, A new decentralized nonlinear voltage controller for multimachine power systems, IEEE Trans. Power Syst. 13, 1, pp. 211-216 (1998).

(13) A. Abbadi, L. Nezli, D. Boukhetala, A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multimachine power systems, Int. J. Electr. Power Energy Syst., 45, pp. 456-67 (2013).

(14) P. Zhao, W. Yao, J. Wen, L. Jiang, S. Wang, S. Cheng, Improved synergetic excitation control for transient stability enhancement and voltage regulation of power systems, Int. J Electr. Power Energy Syst., 68, pp. 44–51 (2015).

(15) Y. Wang, D.J. Hil, Robust nonlinear coordinated control of power systems, Automatica, 32, pp. 611-618 (1996).

(16) Y. Guo, D.J. Hill, Y. Wang, Global transient stability and voltage regulation for power systems, IEEE Trans. on Power Systems, 16, 4, pp. 678-688 (2001).

(17) R. Chaudhary, A.K. Singh, Transient stability improvement of power system using non-linear controllers, Energy and Power Engineering, 6, 1, pp.10–16 (2014).

(18) M. Kristic, Extremum seeking control, in T. Samad and J. Baillieul, Encyclopedia of Systems and Control, Springer, 2014.

(19) K.B. Ariyur, M. Krstic, Real-time optimization by extremum-seeking control, Wiley-Interscience, 2003.

(20). T. Roux-Oliveira, L.R. Costa, A.V. Pino, P. Paz, Extremum seeking-based adaptive PID control applied to neuromuscular electrical stimulation, Medicine, Biology, Analis da Academia Brasileira de Ciencias, 91, pp. 1-20 (2019).

(21) N.J. Killingsworth, M. Krstic, PID tuning using extremum seekin’. IEEE Control Systems Magazine, IEEE Control Syst, 26, 1, pp. 70-79 (2006).

(22) Q. Chen, Y. Tan, J. Li, I. Mareels, Decentralized PID control design for magnetic levitation systems using extremum seeking, IEEE Access, 6, pp. 3059–3067 (2018).

(23) S.F Toloue, S.H Kamali, M. Moallem, Multivariable sliding-mode extremum seeking PI tuning for current control of a PMSM. IET Electric Power Applications. 14, 3, pp. 348-356 (2020).

(24) B. Ouamri, A.F. Zoubir, Comparative analysis of robust controller based on classical proportional-integral controller approach for power control of wind energy system, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 63, 2, pp. 210-216, (2018)

(25) G. Bartolini, L. Fridman, A. Pisano, E. Usai. Modern Sliding Mode Control Theory. New Perspectives and Applications, lectures note in control and information sciences, Springer, Berlin Heidelberg, Germany, 2008.

(26) S. Chen, L. Wang, K. Ma, H. Zhao, A switching-based extremum seeking control scheme, Int. J. Control, 90, 8, pp. 1688-1702 (2017).

(27) Y. Pan, Ü. Özgüner, T. Acarman, Stability and performance improvement of extremum seeking control with sliding mode, Int. J. Control, 76, 9-10, pp. 968–985 (2003).

(28) S. Chen, L. Wang, K. Ma, H. Zhao, A switching-based extremum seeking control scheme, Int. J. Control, 90, 8, pp. 1688-1702 (2016)

Téléchargements

Publiée

2022-03-12

Numéro

Rubrique

Automatique et ordinateurs | Automation and Computer Sciences

Comment citer

APPROCHE DE RECHERCHE EXTRÊME APPLIQUÉE À UN SYSTÈME D’ALIMENTATION MULTI-MACHINE. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(1), 65-72. https://doi.org/10.59277/