CONTRÔLE ROBUSTE DE VITESSE SANS CAPTEUR D'UN ENTRAÎNEMENT DE MOTEUR À INDUCTION UTILISANT UNE APPROCHE SYNERGÉTIQUE

Auteurs

  • SAMIRA BENAICHA LSPIE Laboratory, Electrical Engineering Department University of Batna 2, Algeria Author

DOI :

https://doi.org/10.59277/RRST-EE.2023.4.10

Résumé

Cet article utilise un système adaptatif de référence de modèle (MRAS) pour construire un entraînement amélioré de moteur à induction (IM) à commande orientée champ de rotor (RFOC) sans capteur dans toutes les plages de vitesse. Cependant, en présence de perturbations externes et de variations de paramètres, la méthode de réglage linéaire du contrôleur de l'intégrateur proportionnel (PI) dans le mécanisme d'adaptation MRAS dégrade les performances du moteur. Une technique synergique avancée basée sur MRAS est proposée pour développer deux mécanismes d'adaptation appropriés qui génèrent des estimations de vitesse de glissement et de résistance statorique. Les modèles de référence et réglables sont développés dans le système de coordonnées de rotation synchrone (cadre d-q). L'efficacité de l'algorithme de contrôle proposé a été évaluée dans diverses conditions de fonctionnement à l'aide d'un benchmark IM sans capteur spécifique et de l'environnement logiciel MATLAB/Simulink.

Références

(1) R. Benoit, F. Bruno, P. Degobert, J.P. Hautier, Vector control of induction machines: desensitization and optimisation through fuzzy logic. Springer-Verlag, London (2012).

(2) G. Alain, J. de Leon-Morales, Sensorless AC Motor Control: Robust Advanced Design Techniques and Applications, Springer Cham, (1st ed), (2015).

(3) D. Xu, B. Wang, G. Zhang, G. Wang, Y. Yu, A review of sensorless control methods for AC motor drives, CES Transactions on electrical machines and systems, 2, 1, pp. 104–115 (2018).

(4) J. Hole, State of the Art of Controlled AC Drives without Speed sensors, International journal of electronics, 80, 2, pp. 249–263 (1996).

(5) R. Saifi, N. Nait-Naid, A. Makouf, A. Chrifi-Alaoui, S. Drid, Speed sensorless vector control of induction motor using online neural voltage-current phase difference estimation, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg, 63, 4, pp. 403–409 (2018).

(6) P. Combes, F. Malrait, P. Martin,P. Rouchon, An analysis of the benefits of signal injection for low-speed sensorless control of induction motors, IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)., pp. 721–72, Capri, Italy (June 2016).

(7) E. R. Montero, M. Vogelsberger, T. Wolbank, Sensorless identification of machine saliencies in induction motors in the presence of periodic mechanical disturbances, 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe), Ghent, Belgium (September 2021).

(8) H. Mohan, M. K. Pathak, S. K. Dwivedi, Sensorless Control of Electric Drives – A Technological Review, IETE Technical Review, 37, 5, pp. 504–528, (2020).

(9) H. Feroura, F. Krim,, B. Talbi, A.Laib, A. Belaout, Sensorless field oriented control of current source inverter fed induction motor drive, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg, 63, 1, pp. 100–105 (2018).

(10) M. Korzonek, G.Tarchala, T.O. Kowalska, A review on MRAS-type speed estimators for reliable and efficient induction motor drives, ISA Transactions, 93, pp. 1–13 (2019).

(11) 11 R. Kumar, S. Das, P. Syam, A.K. Chattopadhyay, Review on model reference adaptive system for sensorless vector control of induction motor drives, IET Electric Power Applications, 9, 7, pp. 496–511 (2015).

(12) U.A. Kumar, D. Maladhi, S. Gunasekaran, S. Nandakumar, MRAS for induction motor using fuzzy-PI controller. in intelligent manufacturing and energy sustainability, Proceedings of ICIMES, Singapore: Springer Nature Singapore, pp. 197–204 (2023).

(13) D. Fereka, M. Zerikat, A. Belaidi, S. Chekroun, Performance improvement of ANFIS with sliding mode based on MRAS sensorless speed controller for induction motor drive, Przegląd Elektrotechniczny, 95 (2019).

(14) 14. N. El Ouanjli, S. Mahfoud, M.S. Bhaskar, S. El Daoudi, A. Derouich, M. El Mahfoud, A new intelligent adaptation mechanism of MRAS based on a genetic algorithm applied to speed sensorless direct torque control for induction motor, International Journal of Dynamics and Control International Journal of Dynamics and Control, 10, 6, pp. 2095–2110 (2022).

(15) Y.D. Landau, Adaptive control: the model reference approach, IEEE Transactions on Systems, Man, and Cybernetics, 1, pp. 169–170 (1984).

(16) P. Ganjewar, Y. Pahariya, Modified MRAS approach for sensorless speed control of induction motor for reliability improvement, International Journal of Information Technology, 14, 3, pp. 1595–1602 (2022).

(17) J. Li, D. Wang, X. Yang, Speed sensorless control employing adaptive sliding mode adjustable model MRAS for induction motors at low speed range, Journal of Physics: Conference Series, IOP Publishing, 1633, 1, pp. 012145 (2020).

(18) S. J. Rind, S. Javed, Y. Rehman, M. Jamil, Sliding mode control rotor flux MRAS based speed sensorless induction motor traction drive control for electric vehicles, AIMS Electronics and Electrical Engineering, 7, 4, pp. 354–379 (2023).

(19) T. Wang., B.Wang, Y. Yu, D. Xu, Discrete sliding-mode-based MRAS for speed-sensorless induction motor drives in the high-speed range; IEEE Transactions on Power Electronics, pp. 1–13 (2023).

(20) W. Hamdi, M. Y. Hammoudi, A. Betka, Sensorless Speed control of induction motor using model reference adaptive system and deadbeat regulator; Engineering Proceedings, 56, 1, pp.16 (2023).

(21) V. Kousalya, B. Singh, Optimized reference points based vector control of induction motor drive for electric vehicle, IEEE Transactions on Industry Applications, 59, 4, pp. 4164–4174 (2023).

(22) H. Heidari, A. Rassolkin, M.H. Holakooie, T. Vaimann, A. Kallaste, A. Belahcen, A. Lukichev, Parallel estimation system of stator resistance and rotor speed for active disturbance rejection control of six-phase induction motor, Energies, 13, 5, pp1121 (2020).

(23) M. Boumegouas, B. Kabir, K. Kouzi, New synergetic scheme control of electric vehicle propelled by six-phase permanent magnet synchronous motor; Advances in Electrical and Electronic Engineering, 20, 1, pp. 1–14, (2022).

(24) M. Louri, L.Barazane, Synergetic speed control of squirrel motor drives, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg, 61, 2, pp. 111–115 (2016).

(25) A. Radionov, A.S. Mushenko, Estimation of components of rotor flux linkage vector for asynchronous electric drive, International Russian Automation Conference (RusAutoCon), pp. 1–5 (2018).

(26) H. Khelloufi, S. Benaicha, Robust control of an induction motor with speed and flux estimator based on synergetic approach, 19th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 2048–2053 (2022).

(27) A. Kolesnikov, G. Veselov, A. Kolesnikov, Modern applied control theory: synergetic approach in control theory, TRTU, pp. 4477–4479, Moscow, Taganrog (2000).

(28) F. Mehazzem, Contribution to induction motor control for electric traction. PhD thesis, Department of Embedded Systems, ESIEE School, Paris Est University, Paris, France (2010).

(29) M. Ghanes, A. Glumineau, L. Loron, New Benchmark for sensorless induction motor drives and validation of a nonlinear controller using a speed observer, 31st Annual Conference of IEEE Industrial Electronics Society (IECON), Raleigh, North Carolina, USA, (November 2005).

Téléchargements

Publiée

2023-12-23

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

CONTRÔLE ROBUSTE DE VITESSE SANS CAPTEUR D’UN ENTRAÎNEMENT DE MOTEUR À INDUCTION UTILISANT UNE APPROCHE SYNERGÉTIQUE. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(4), 381-387. https://doi.org/10.59277/RRST-EE.2023.4.10