CONTRÔLEUR DE PLATEFORME PARALLÈLE BASÉ SUR UN ALGORITHME DE DIFFÉRENCE ADAPTATIVE – PARTIE 1

Auteurs

  • RUIYANG WANG School of Automation, University of Electronic Science and Technology of China, Chengdu 610054 China. Author
  • QIUXIANG GU School of Automation, University of Electronic Science and Technology of China, Chengdu, 610054, China. Author
  • SIYU LU School of Automation, University of Electronic Science and Technology of China, Chengdu 610054 China. Author
  • JIAWEI TIAN School of Automation, University of Electronic Science and Technology of China, Chengdu 610054 China. Author
  • ZHENGTONG YIN College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China. Author
  • XIAOLU LI School of Geographical Sciences, Southwest University, Chongqing, 400715, China. Author
  • XIAOBING CHEN Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge 70803 LA, USA. Author
  • LIRONG YIN Department of Geography and Anthropology, Louisiana State University, Baton Rouge 70803 LA, USA. Author
  • WENFENG ZHENG School of Automation, University of Electronic Science and Technology of China, Chengdu 610054 China. Author

DOI :

https://doi.org/10.59277/RRST-EE.2024.2.21

Mots-clés :

Contrôle de l'espace de travail, Contrôleur prédictif de modèle (MPC), Algorithme de différence adaptatif, Contrôle de plate-forme parallèle

Résumé

Il existe deux approches principales du contrôle de mouvement sur les plates-formes parallèles : le contrôle de l'espace commun et le contrôle de l'espace de travail. Le contrôle spatial conjoint est une stratégie en boucle semi-fermée facile à mettre en œuvre, mais son effet de contrôle pourrait être meilleur. Le contrôle de l'espace de travail consiste à obtenir la position en temps réel de la plate-forme parallèle via la solution avancée et à fermer la boucle de vitesse et de position de la plate-forme parallèle dans l'espace de travail. Cet article utilise un contrôleur prédictif de modèle (MPC) pour contrôler la plate-forme parallèle avec le contrôle de l'espace de travail comme objectif de recherche. La fonction de perte est construite sur la base de l'idée d'optimisation de l'intelligence en essaim et l'algorithme de différence adaptative est utilisé pour optimiser les paramètres de MPC. Cette partie détaille le contexte de la recherche et le processus de conception de l'algorithme. Ensuite, l'algorithme MPC est implémenté sur l'ordinateur supérieur en utilisant C++ et le test physique est implémenté. Les résultats des tests montrent que le contrôleur a un bon effet de contrôle sur la plate-forme physique.

Références

(1) B. Monsarrat, C. M. Gosselin, Singularity analysis of a three-leg six-degree-of-freedom parallel platform mechanism based on Grassmann line geometry, The International Journal of Robotics Research, 20, 4, pp. 312–328 (2001).

(2) K.E. Zanganeh, R. Sinatra, J. Angeles, Kinematics and dynamics of a six-degree-of-freedom parallel manipulator with revolute legs, Robotica, 15, 4, pp. 385–394 (1997).

(3) J. Fu, F. Gao, Y. Pan, H. Du, Forward kinematics solutions of a special six-degree-of-freedom parallel manipulator with three limbs, Advances in Mechanical Engineering, 7, 5, p. 1687814015582118 (2015).

(4) D. Zlatanov, M. Dai, R. Fenton, B. Benhabib, Mechanical design and kinematic analysis of a three-legged six degree-of-freedom parallel manipulator, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 9396, pp. 529–536 (1992).

(5) M. Liu, Q. Gu, B. Yang, Z. Yin, S. Liu, L. Yin, W. Zheng, W, Kinematics model optimization algorithm for six degrees of freedom parallel platform, Applied Sciences, 13, 5, pp. 3082 (2023).

(6) Gu, Q. et l., A novel architecture of a six degrees of freedom parallel platform, Electronics, 12, 8, pp. 1774 (2023).

(7) C. Chen, H. Pham, Trajectory planning in parallel kinematic manipulators using a constrained multi-objective evolutionary algorithm, Nonlinear Dynamics, 67, 2, pp. 1669–1681 (2011).

(8) C.T. Chen, T.T. Liao, A hybrid strategy for the time-and energy-efficient trajectory planning of parallel platform manipulators, Robotics and Computer-Integrated Manufacturing, 27, 1, pp. 72–81 (2011).

(9) J.R.G. Martínez, J.R. Reséndiz, M.Á.M. Prado, E.E.C. Miguel, Assessment of jerk performance s-curve and trapezoidal velocity profiles, XIII International Engineering Congress (CONIIN), IEEE, pp. 1–7 (2017).

(10) M. Boussoffara, I.B.C. Ahmed, Z. Hajaiej, Sliding mode controller design: stability analysis and tracking control for flexible joint manipulator, Revue Roumaine Des Sciences Techniques—Série Électrotechnique et Énergétique, 66, 3, pp.161–167 (2021).

(11) Y. Zuo, J. Mei, C. Jiang, X. Yuan, S. Xie, C.H. Lee, Linear active disturbance rejection controllers for PMSM speed regulation system considering the speed filter, IEEE Transactions on Power Electronics, 36, 12, pp. 14579–14592 (2021).

(12) M.S. Ayas, E. Sahin, I.H. Altas, High order differential feedback controller design and implementation for a Stewart platform, Journal of Vibration and Control, 26, 11-12, pp. 976–988 (2020).

(13) J. Xu, Q. Wang, Q. Lin, Parallel robot with fuzzy neural network sliding mode control, Advances in Mechanical Engineering, 10, 10, p. 1687814018801261 (2018).

(14) J. Zhao, D. Wu, H. Gu, Performance Evaluation of Stewart-Gough Flight Simulator Based on L 1 Adaptive Control, Applied Sciences, 11, 7, p. 3288 (2021).

(15) Z. Bingul, O. Karahan, Real-time trajectory tracking control of Stewart platform using fractional order fuzzy PID controller optimized by particle swarm algorithm, Industrial Robot: The International Journal of Robotics Research and Application (2021).

(16) H. Tourajizadeh, S. Manteghi, Design and optimal control of dual-stage Stewart platform using feedback-linearized quadratic regulator, Advanced Robotics, 30, 20, pp. 1305–1321 (2016).

(17) Z. Bubnicki, Modern control theory. Springer, Berlin, pp. 17–37 (2005).

(18) N. Kacimi, A. Idir, S. Grouni, M.S. Boucherit, A new combined method for tracking the global maximum power point of photovoltaic systems, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 3, pp. 349–354 (2022).

(19) B. Kouvaritakis, M. Cannon, Model Predictive Control, Springer, Switzerland, pp. 122–164 (2016).

(20) M. Abdelwanis, R.A.G.B. El-Sehiemy, Efficient parameter estimation procedure using sunflower optimization algorithm for six-phase induction motor, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 3, pp. 259–264 (2020).

(21) K.V. Price, Differential Evolution, in Handbook of optimization: Springer, Berlin, pp. 187–214 (2013).

(22) M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential Evolution: A review of more than two decades of research, Engineering Applications of Artificial Intelligence, 90, p. 103479 (2020).

(23) C.A. Chen, T.C. Chiang, Adaptive differential evolution: A visual comparison, 2015 IEEE Congress on Evolutionary Computation (CEC), 2017, IEEE, pp. 401–408 (2017).

(24) X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Transactions on Evolutionary Computation, 3, 2, pp. 82–102 (1999).

(25) I. Farda, A. Thammano, A self-adaptive differential evolution algorithm for solving optimization problems, International Conference on Computing and Information Technology, Cham: Springer International Publishing, pp. 68–76 (2022).

Téléchargements

Publiée

2024-07-07

Numéro

Rubrique

Automatique et ordinateurs | Automation and Computer Sciences

Comment citer

CONTRÔLEUR DE PLATEFORME PARALLÈLE BASÉ SUR UN ALGORITHME DE DIFFÉRENCE ADAPTATIVE – PARTIE 1. (2024). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 69(2), 243-254. https://doi.org/10.59277/RRST-EE.2024.2.21