ÉTUDE DE L'affaissement de tension dans le système de distribution et évaluation de l'effet d'un parc éolien équipé d'un générateur à induction à double alimentation
DOI :
https://doi.org/10.59277/RRST-EE.2023.3.4Mots-clés :
Système de distribution, Générateur asynchrone à double alimentation (DFIG), Chute de tension, Parc éolienRésumé
La capacité du DFIG à effectuer un contrôle de vitesse variable, de puissance réactive et à réduire la puissance nominale du convertisseur sont les principales raisons du choix populaire du DFIG pour les applications d'énergie éolienne. Le comportement dynamique d'un parc éolien basé sur un DFIG perturbé dans le réseau de distribution électrique est décrit dans cet article. Le contrôle de la puissance et de la tension de sortie du terminal DFIG est la tâche principale du convertisseur à rotor. L'effet de l'énergie éolienne sur divers paramètres du système, tels que la chute de tension et le courant de charge, est présenté. Le système est simulé dans le logiciel Matlab/Simulink. Dans le système étudié, le parc éolien est connecté à un système de distribution qui fournit de l'électricité au réseau 120 kV via une ligne d'alimentation. Des études de simulation ont été réalisées à l'aide de Matlab/Simulink pour analyser l'effet de différents modes de contrôle DFIG sur la qualité de l'énergie dans un système de distribution de parc éolien basé sur DFIG. Dans d'autres conditions de fonctionnement, la réponse du système est simulée et comparée. Les résultats de la simulation sont présentés et discutés selon deux modes : régulation de puissance réactive et régulation de tension.
Références
(1) F.M. Zamani, M. Hashemi, G. Shahgholian, Adaptive control of nonlinear time delay systems in the presence of output constraints and actuator’s faults, International Journal of Control, 96, 3, pp. 541–553 (2023).
(2) I.V. Nemoianu, R.M. Ciuceanu, Characterization of non-linear three-phase unbalanced circuits powers flow supplied with symmetrical voltages, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 60, 4, pp. 355–365 (2015).
(3) A. Kharrazi, V. Sreeram, Y. Mishra, Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network- A review, Renewable and Sustainable Energy Reviews, 120, Article 109643 (2020).
(4) F.H. Gandoman, A. Ahmadi, A. M. Sharaf, P. Siano, J. Pou, B. Hredzak, V. G. Agelidis, Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems, Renewable and Sustainable Energy Reviews, 82, pp. 502–514 (2018).
(5) M. Rahmani, F. Faghihi, H. Moradi-Cheshmeh-Beigi, S. Hosseini, Frequency control of islanded microgrids based on fuzzy cooperative and influence of STATCOM on frequency of microgrids, Journal of Renewable Energy and Environment, 5, 4, pp. 27–33 (2018).
(6) S. Ahmadi, I. Sadeghkhani, G. Shahgholian, B. Fani, J.M. Guerrero, Protection of LVDC microgrids in grid-connected and islanded modes using bifurcation theory, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9, 3, pp. 1–8 (2021).
(7) S. Agalar, Y.A. Kaplan, Power quality improvement using STS and DVR in wind energy system, Renewable Energy, 118, pp. 1031–1040 (2018).
(8) A. Sedaghat, M.E.H. Assad, M. Gaith, Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades, Energy, 77, pp. 752–759 (2014).
(9) N. Kefif, B. Melzi, M. Hashemian, M.E.H. Assad, S. Hoseinzadeh, Feasibility and optimal operation of micro energy hybrid system (hydro/wind) in the rural valley region, International Journal of Low-Carbon Technologies, 17, pp. 58–68 (2022).
(10) A. Jouanne, T.K.A. Brekken, Ocean and geothermal energy systems, Proceedings of the IEEE, 105, 11, pp. 2147–2165 (2017).
(11. K. Zhang, B. Zhou, Q. Wu, Y. Cao, N. Liu, N. Voropai, E. Barakhtenko, Modeling and utilization of biomass-to-syngas for industrial multi-energy systems, CSEE Journal of Power and Energy Systems, 7, 5, pp. 932–942 (2021).
(12) E. Hosseini, G. Shahgholian, H. Mahdavi-Nasab, F. Mesrinejad, Variable speed wind turbine pitch angle control using three-term fuzzy controller, International Journal of Smart Electrical Engineering, 11, 2, pp. 63–70 (2022).
(13) F. Hajimohammadi, B. Fani, I. Sadeghkhani, Fuse saving scheme in highly photovoltaic‐integrated distribution networks, International Transactions on Electrical Energy Systems, 30, 1, e12148 (2020).
(14) M. Makkiabadi, S. Hoseinzadeh, M. Mohammadi, S.A. Nowdeh, S. Bayati, U. Jafaraghaei, S.M. Mirkiai, M.E.H. Assad, Energy feasibility of hybrid PV/wind systems with electricity generation assessment under Iran environment, Applied Solar Energy, 56, pp. 517–525 (2020).
(15) S. Jenab, B. Fani, H. Ghasvari, Transient performance improvement of wind turbines with doubly fed induction generators using fractional order control strategy, Journal of Intelligent Procedures in Electrical Technology, 4, 16, pp. 17–28 (2014).
(16) A.M.S. Yunus, A. Abu-Siada, M.A.S. Masoum, M.F. El-Naggar, J.X. Jin, Enhancement of DFIG LVRT capability during extreme short-wind gust events using SMES technology, IEEE Access, 8, pp. 47264-47271 (2020).
(17) S. Huang, Q. Wu, Y. Guo, F. Rong, Hierarchical active power control of DFIG-based wind farm with distributed energy storage systems based on ADMM, IEEE Trans. on Sustainable Energy, 11, 3, pp. 1528–1538 (2020).
(18) H. Ghaedi, G. Shahgholian, M. Hashemi. Comparison of the effects of two flatness-based control methods for STATCOM on improving stability in power systems including DFIG-based wind farms, Iranian Electric Industry Journal of Quality and Productivity, 8, 15, pp. 81–90 (2019).
(19) A.R.A. Jerin, K. Palanisamy, S. Umashankar, A.D. Thirumoorthy, Power quality improvement of grid-connected wind farms through voltage restoration using dynamic voltage restorer, International Journal of Renewable Energy Research, 6, 1, pp. 53–60 (2016).
(20) T. Tarasiuk, S.G. Jayasinghe, M. Gorniak, A. Pilat, V. Shagar, W. Liu, J.M. Guerrero, Review of power quality issues in maritime microgrids, IEEE Access, 9, pp. 81798–81817 (2021).
(21) J. Liu, W. Yao, J. Wen, J. Fang, L. Jiang, H. He, S. Cheng, Impact of power grid strength and PLL parameters on stability of grid-connected DFIG wind farm, IEEE Trans. on Sustainable Energy, 11, 1, pp. 545–557 (2020).
(22) X. Zhang, Y. Chen, Y. Wang, X. Zha, S. Yue, X. Cheng, L. Gao, Deloading power coordinated distribution method for frequency regulation by wind farms considering wind speed differences, IEEE Access, 7, pp. 122573–122582 (2019).
(23) A. Mitra, D. Chatterjee, Active power control of DFIG-based wind farm for improvement of transient stability of power systems, IEEE Trans. on Power Systems, 31, 1, pp. 82–93 (2016).
(24) H. Mahvash, S.A. Taher, M. Rahimi, A new approach for power quality improvement of DFIG-based wind farms connected to weak utility grid, Ain Shams Engineering Journal, 8, 3, pp. 415–430 (2017).
(25) M.E. Hossain, A non-linear controller based new bridge type fault current limiter for transient stability enhancement of DFIG based wind farm, Electric Power Systems Research, 152, pp. 466–484 (2017).
(26) R. Ferdinand, M. Cupelli, A. Monti, Multipoint synchronized recordings in offshore wind farms with continuous measurement power quality meters, IEEE Trans. on Instrumentation and Measurement, 67, 12, pp. 2785–2795 (2018).
(27) A. Benali, M. Khiat, T. Allaoui, M. Denaï, Power quality improvement and low voltage ride through capability in hybrid wind-PV farms grid-connected using dynamic voltage restorer, IEEE Access, 6, pp. 68634–68648 (2018).
(28) S. Hasan, A. R. Nair, R. Bhattarai, S. Kamalasadan, K. M. Muttaqi, A coordinated optimal feedback control of distributed generators for mitigation of motor starting voltage sags in distribution networks, IEEE Trans. on Industry Applications, 56, 1, pp. 864–875 (2020).
(29) K. Zhu, Y. Wang, P. Yin, J. Ni, Voltage sag source location technology based on corresponding sequence components, IET Generation, Transmission and Distribution, 9, 9, pp. 820-827 (2015).
(30) J. Morren, S.W.H. de Haan, Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip, IEEE Trans. on Energy Conversion, 20, 2, pp. 435–441 (2005).
(31) S. Kamble, C. Thorat, Voltage sag characterization in a distribution system: A case study, Journal of Power and Energy Engineering, 2, pp. 546-553 (2014).
(32) A.M. Saeed, S.H.E. Abdel Aleem, A.M. Ibrahim, M.E. Balci, E.E.A. El-Zahab, Power conditioning using dynamic voltage restorers under different voltage sag types, Journal of Advanced Research, 7, 1, pp. 95–103 (2016).
(33) S. Hasan, K.M. Muttaqi, D. Sutanto, Application of the automatic segmented Hilbert Huang transform method for the evaluation of the single-event characteristics of voltage sags in power systems, IEEE Transactions on Industry Applications, 57, 2, pp. 1882–1891 (2021).
(34) O. Poisson, P. Rioual, M. Meunier, Detection and measurement of power quality disturbances using wavelet transform, IEEE Transactions on Power Delivery, 15, 3, pp. 1039–1044 (2000).
(35) S. Dedeoglu, G.C. Konstantopoulos, A.G. Paspatis, Grid-supporting three-phase inverters with inherent root mean square current limitation under balanced grid voltage sags, IEEE Transactions on Industrial Electronics, 68, 11, pp. 11379-11389 (2021).
(36) S. Hasan, K.M. Muttaqi, D. Sutanto, Detection and characterization of time-variant nonstationary voltage sag waveforms using segmented Hilbert–Huang transform, IEEE Transactions on Industry Applications, 56, 4, pp. 4563-4574 (2020).
(37) Y. Sillapawicharn, A hybrid synchronously rotating reference frame-based voltage sag detection under distorted grid voltages, Proceeding of the IEEE/ECTICON, 1, 1-4, Nakhon Ratchasima, Thailand (2014).
(38) R. Naidoo, P. Pillay, A new method of voltage sag and swell detection, IEEE Transactions on Power Delivery, 22, 2, pp. 1056-1063 (2007.
(39) S. Hasan, K.M. Muttaqi, D. Sutanto, M.A. Rahman, A novel dual slope delta modulation technique for a current source inverter based dynamic voltage restorer for mitigation of voltage sags, IEEE Transactions on Industry Applications, 57, 5, pp. 5437-5447 (2021).
(40) E.M. Molla, C.C. Kuo, Voltage sag enhancement of grid-connected hybrid PV-wind power system using battery and SMES based dynamic voltage restorer, IEEE Access, 8, pp. 130003-130013 (2020).
(41) P. Rajasekhar, C. Narayana, Mitigation of voltage sag and swell using distributed power flow controller, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3, 8, Aug. 2014).
(42) J. Moon, J. Kim, Voltage sag analysis in loop power distribution system with SFCL, IEEE Trans. on Applied Superconductivity, 23, 3, pp. 1-4 (2013).
(43) H.M.G.C. Branco, M. Oleskovicz, D.V. Coury, A.C.B. Delbem, Multiobjective optimization for power quality monitoring allocation considering voltage sags in distribution systems, International Journal of Electrical Power and Energy Systems, 97, pp. 1-10 (2018).
(44) J. Bhukya, V. Mahajan, Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm, International Journal of Electrical Power and Energy Systems, 108, pp. 314-335 (2019).
(45) Y. Mohammadi, R.C. Leborgne, A new approach for voltage sag source relative location in active distribution systems with the presence of inverter-based distributed generations, Electric Power Systems Research, 182, Article 106222 (2020).
(46) A. Izanlo, A. Gholamian, M.V. Kazemi, Comparative study between two sensorless methods for direct power control of doubly fed induction generator, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 62, 4, pp. 358–364 (2017).
(47) M. Tavoosi, B. Fani, E. Adib, Stability analysis and control of dfig based wind turbine using FBC strategy, Journal of Intelligent (Procedures in Electrical Technology, 4, 15, pp. 31-42 (2013).
(48) F. Amrane, A. Chaiba, B.E. Babes, S. Mekhilef, Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 61, 4, pp. 319-324 (2016).
(49) E. Hosseini, G. Shahgholian, Different types of pitch angle control strategies used in wind turbine system applications, Journal of Renewable Energy and Environment, 4, 1, pp. 20-35 (2017).
(50) H. Moghadassi, M.R. Moradian, Dynamic response and low-voltage ride-through improvement for a DFIG, using an integral sliding mode controller with an adjustable reactive power reference value, Journal of Intelligent Procedures in Electrical Technology, 14, 55, pp. 13-26 (2023).
(51) S. Arezki, M. Boudour, Study and regulation of dc bus voltages of wind-photovoltaic system, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 59, 1, 35–36 (2014).
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2023
Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.