THÉORIE DES CATASTROPHES CONCERNANT LE FONCTIONNEMENT D'UN MOTEUR ÉLECTRIQUE À COURANT CONTINU À EXCITATION SÉRIE

Auteurs

  • CRISTIAN GEORGE DRAGOMIRESCU Universitatea Politehnica din Bucureşti, Romania Author
  • Radu-Mircea CIUCEANU Universitatea Politehnica din Bucureşti, Romania Author
  • Maria-Iuliana DASCĂLU Universitatea Politehnica din Bucuresti, Romania Author https://orcid.org/0000-0003-3045-8306
  • Iosif Vasile NEMOIANU Universitatea Politehnica din Bucuresti, Romania Author https://orcid.org/0000-0001-5610-8318

DOI :

https://doi.org/10.59277/RRST-EE.2023.68.1.15

Mots-clés :

Théorie des catastrophes, Systèmes dynamiques, Discontinuités, Singularités, Points d'équilibre, Transitions soudaines, Espace de contrôle, Espace des phases, Pointe de la catastrophe, Moteur électrique à courant continu avec excitation série

Résumé

Cet article met en lumière la théorie des catastrophes et son application à l'analyse des positions d'équilibre des systèmes électriques dynamiques. Un modèle d'étude a été adopté pour un moteur électrique à courant continu à excitation série fonctionnant en régime transitoire. Du point de vue de la théorie des catastrophes, à partir des équations de fonctionnement du moteur électrique à courant continu avec excitation série, les fonctions décrivant son comportement dans l'espace des phases et l'espace de commande ont été obtenues. Ensuite, les points d'équilibre du modèle choisi ont été déterminés. Aussi, pour une meilleure compréhension des résultats obtenus, l'évolution de ce comportement dans l'espace des phases et l'espace de contrôle a été mise en évidence graphiquement à l'aide du logiciel MATLAB.

Références

R. Thom, Stabilité structurelle et morphogenèse, W. A. Benjamin, New York, 1972.

E. C. Zeeman, Catastrophe theory. Selected papers, 1972–1977. Addison–Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1977.

E. C. Zeeman, Catastrophe Theory, Scientific American, April, pp. 65–83 (1976).

H. J. Sussmann, R. S. Zahler, Catastrophe Theory: Mathematics Misused, The Sciences, 17, 6 (1977).

H. J. Sussmann, R. S. Zahler, Catastrophe Theory as Applied to the Social and Biological Sciences: A Critique, Synthese–Mathematical Methods in the Social Sciences, Part III, 37, 2, pp. 117–216 (1978).

T. Poston, I. Stewart, Catastrophe Theory and its Applications, Pitman Publishing Ltd., London, San Francisco, Melbourne (1978).

I. Stewart, Elementary catastrophe – theory, IEEE Transactions on Circuits and Systems, 30, 8, pp. 578–586 (1983).

I. Stewart, Non-Elementary Catastrophe-Theory, IEEE Transactions On Circuits And Systems, 30, 9, pp. 663–670 (1983).

I. Stewart, Applications Of Nonelementary Catastrophe-Theory, IEEE Transactions On Circuits And Systems, 31, 2, pp. 165–174 (1984).

R. Voinea, D. Voiculescu, F. P. Simion, Introducere în mecanica solidului cu aplicaţii în inginerie, Editura Academiei Române, Bucureşti (1989).

R. M. Ciuceanu, I. V. Nemoianu, C. P. Mihai, Mașini Electrice – fundamente teoretice şi funcţionale, Editura Politehnica Press (2020).

A. Moraru, Mașini electrice. Teorie, încercari și exploatare, Editura AGIR, Bucureşti (2010).

N. Galan, Mașini electrice, Editura Academiei Române, București (2011).

R. Voinea, I. Stroe, Introducere în teoria sistemelor dinamice, Editura Academiei Române, Bucureşti (2000).

A. A. Sallam, J. I. Dineley, Catastrophe-Theory As A Tool For Determining Synchronous Power System Dynamic Stability, IEEE Transactions On Power Apparatus And Systems, 102, 3, pp. 622–630 (1983).

A. A. Sallam, Power-Systems Transient Stability Assessment Using Catastrophe-Theory, IEEE Proceedings - C Generation Transmission and Distribution, 136, 2, pp. 108–114 (1989).

V. Ajjarapu, Application Of Catastrophe-Theory To Describe Voltage Collapse In Power-Systems, Proceedings Of The 32nd Midwest Symposium On Circuits And Systems, 1, 2, pp. 248–251 (1990).

J. Deng, C. Zhang, Steady-State Stability Assessment Of Multimachine Power-Systems Using Catastrophe-Theory, TENCON ’93: 1993 IEEE Region 10 Conference On Computer, Communication, Control And Power Engineering, 5, pp. 195–199 (1993).

R. Parsiferaidoonian, X.-L. Sun, Catastrophe-Theory Model Of Multimachine Power-Systems For Transient Stability Studies, TENCON '93: 1993 IEEE Region 10 Conference On Computer, Communication, Control And Power Engineering, 5, pp. 187–190 (1993).

Y. Huang, S. Tsukao, Y. Tamura, S. Iwamoto, Application of catastrophe theory to power systems, Electrical Engineering In Japan, 115, 7, pp. 40–48 (1995).

S. C. Tripathy, S. Prasad, T. S. Bhatti, A new swallowtail catastrophe model for power system transient stability assessment, Electric Machines And Power Systems, 25, 2, pp. 121–140 (1997).

S. Prasad, S. C. Tripathy, Transient stability analysis of power system using catastrophe theory including field flux decay effect, Electric Machines And Power Systems, 26, 5, pp. 453–464 (1998).

S. I. Glukhova, E. A. Palkin, Application of catastrophe theory for multimodal distributions statistical analysis, Theory Of Probability And Its Applications, 49, 3, pp. 414–428 (2004).

J. Guo, X. L. Chen, H. Z Jin, D. J Wu, Analyzing brittleness of complex system based on the catastrophe theory, Proceedings Of The International Conference On Intelligent Systems and Knowledge Engineering (ISKE 2007), Book SeriesAdvances in Intelligent Systems Research, Article Number 1377 (2007).

Z. H. Wang, A. Girgis, V. Aravnthan, E. Makram, Wide Area Power System Transient Stability Assessment Using Catastrophe Theory Method and Synchrophasors, 2011 IEEE Power And Energy Society General Meeting, Book Series IEEE Power and Energy Society General Meeting PESGM (2011).

G. A. Mahmoud, Voltage stability analysis of radial distribution networks using catastrophe theory, IET Generation Transmission & Distribution, 6 , 7 , pp. 612–618 (2012).

J. J. Li, Q. Zhang, S. Guo, G. Wang, F. Sun, T. Zhang, Q. S. Zhao, C. Wang, J. Yu, X. K. Cheng, An Evaluation Method of Multi-source Control Capacity on Transient Angle stability, 2016 IEEE International Conference On Power System Technology (POWERCON) (2016).

Z. Zeng, H. Li, S. Q. Tang, H. Yang, R. X. Zhao, Multi-objective control of multi-functional grid-connected inverter for renewable energy integration and power quality service, IET Power Electronics, 9, 4, pp. 761–770 (2016).

M. M. Eladany, A. A. Eldesouky, A. A. Sallam, Power System Transient Stability: An Algorithm for Assessment and Enhancement Based on Catastrophe Theory and FACTS Devices, IEEE Access, 6, pp. 26424–26437 (2018).

M. T. Kenari, M. S. Sepasian, M. S. Nazar, Probabilistic assessment of static voltage stability in distribution systems considering wind generation using catastrophe theory, IET Generation Transmission & Distribution, 13, 13, pp. 2856-2865 (2019).

N. Ali, W. Alam, M. Pervaiz, J. Iqbal, Nonlinear adaptive backstepping control of permanent magnet synchronous motor, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 66, 1, pp. 9–14 (2021).

E. Boudissa, F. Habbi, Nour El Houda Gabour, M. Bounekhla, New dynamic genetic selection algorithm: application to induction machine identification, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 66, 3, pp. 145–151 (2021).

E. Benyoussef, S. Barkat, Direct torque control based on space vector modulation with balancing strategy of dual star induction motor, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 1, pp. 15–20 (2022).

E. Benyoussef, S. Barkat, Three-level direct torque control based on balancing strategy of five-phase induction machine, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 2, pp. 93–98 (2022).

M. M. Rădulescu, A. A. Pop, Experimental determination of linear dynamic model parameters of the separately excited brushed dc motor by modified Pásek’s method, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 3, pp. 271–274 (2022).

Téléchargements

Publiée

2023-04-01

Numéro

Rubrique

Automatique et ordinateurs | Automation and Computer Sciences

Comment citer

THÉORIE DES CATASTROPHES CONCERNANT LE FONCTIONNEMENT D’UN MOTEUR ÉLECTRIQUE À COURANT CONTINU À EXCITATION SÉRIE. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(1), 90-95. https://doi.org/10.59277/RRST-EE.2023.68.1.15