PROCEDE AMELIORE DE REDUCTION ACTIVE DES PULSATIONS DE COUPLE POUR DES CHARGES PULSANTES ENTRAINEES PAR DES MACHINES A INDUCTION
Mots-clés :
Contrôle de couple actif, Machine à induction, Observateur basé à Luenberger, Contrôle sans paramètres mécaniquesRésumé
Une stratégie de réduction active des pulsations de couple en ligne pour les systèmes de rotation avec un couple de charge dépendant de la position (comme les charges basées sur le vilebrequin) entraînées par des machines à induction connectées au réseau est proposée. La stratégie de contrôle nécessite des informations sur la vitesse du système et le couple de la machine à induction. Aucun paramètre rigide n'est nécessaire pour la stratégie de contrôle en boucle fermée. Le principe théorique est simulé et validé expérimentalement.
Références
(1) G. Zuo, L. Wong, A review on recent active vibration control techniques, arXiv, Jan. 22 (2016).
(2) D. Miljković, Review of active vibration control, MIPRO Conference, Opatija, Croatia, pp. 103–108, (2009).
(3) J. Liu, X. Zhang, C. Wang, R. Yan, Active Vibration Control Technology in China, IEEE Instrumentation & Measurement Magazine, 25, 2, pp. 36–44 (2022).
(4) G. Reina, G.D. Rose, Active vibration absorber for automotive suspensions: a theoretical study, International Journal of Heavy Vehicle Systems, 23, 1, p. 21 (2016).
(5) Q. Wang, K. Rajashekara, Y. Jia, J. Sun, A Real-time vibration suppression strategy in electric vehicles,” IEEE Transactions on Vehicular Technology, 66, 9, pp. 7722–7729 (2017).
(6) P. Gao, T. Yu, Y. Zhang, J. Wang, J. Zhai, Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review, Chinese Journal of Aeronautics, 34, 4, pp. 83–114 (2021).
(7) R. Olaru, M.-M. Mihai, B. Gîrtan, C. Petrescu, A. Arcire, Design and experiment of an electromagnetic vibrational inertial actuator using linearized magnetic spring,” Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 63, 3, pp. 253–258, Bucarest (2018).
(8) T.-L. Le, T.-T. Huynh, C.-M. Lin, Adaptive filter design for active noise cancellation using recurrent type-2 fuzzy brain emotional learning neural network, Neural Comput & Applic, 32, 12, pp. 8725–8734 (2020).
(9) J. Wang, J. Zhang, J. Xu, C. Zheng, X. Li, An optimization framework for designing robust cascade biquad feedback controllers on active noise cancellation headphones, Applied Acoustics, 179, p. 108081 (2021).
(10) T. Li et al., Vehicle engine noise cancellation based on a multi-channel fractional-order active noise control algorithm, Machines, 10, 8, Art. no. 8 (2022).
(11) K. Nagata, H. Nemoto, T. Katayama, Y. Akita, A sensorless control for damping of torsional vibrations with middle voltage induction motor drive for compressor application, Proc. of the 2011 14th European Conference on Power Electronics and Applications, Aug. 2011, pp. 1–10.
(12) C. Ahumada, P. Wheeler, Evaluation of input-shaping control robustness for the reduction of torsional vibrations, IEEE Transactions on Industry Applications, 57, 5, pp. 5028–5038 (2021).
(13) Q. Xu, W. Hong, “Dynamic performance of reciprocating compressor with capacity regulation system,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 233, no. 3, pp. 526–535, Jun. 2019.
(14) T. Feese, C. Hill, Prevention of torsional vibration problems in reciprocating machinery, Proceedings of the thirty-eighth turbomachinery symposium, pp. 213–238 (2009).
(15) S.G. Chernyi, P. Erofeev, B. Novak, V. Emelianov, Investigation of the mechanical and electromechanical starting characteristics of an asynchronous electric drive of a two-piston marine compressor, Journal of Marine Science and Engineering, 9, 2, Art. no. 2 (2021).
(16) C. Lascu, I. Boldea, F. Blaabjerg, Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives, IEEE Trans. on Industrial Electronics, 53, 1, pp. 57–65 (2006).
(17) C. Lascu, I. Boldea, F. Blaabjerg, A modified direct torque control for induction motor sensorless drive, IEEE Transactions on Industry Applications, 36, 1, pp. 122–130 (2000).
(18) A.D. Martin, L. Tutelea, R. Babau, I. Boldea, A novel approach to PLCs based systems utilized in electric drives, 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Aug. 2019, pp. 77–84.
(19) A. Mechernene, M. Loucif, M. Zerikat, Induction motor control based on a fuzzy sliding mode approach, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 64, 1, pp. 39–44, Bucarest (2019).
(20) E G. Boudissa, F. Habbi, N.E.H. Gabour, M. Bounekhla, A new dynamic genetic selection algorithm: application to induction machine identification, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. Vol. 66, 3, pp. 145–151, Bucarest, 2021.
(21) S. Medjmadj, D. Diallo, A. Arias, Mechanical sensor fault-tolerant controller in pmsm drive: experimental evaluation of observers and signal injection for position estimation, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 66, 2, pp. 77–83 Bucarest (2021).