RÉCUPÉRATION DE CHALEUR LORS DE LA PYROLYSE DE LA BIOMASSE FOURNIE PAR UN SYSTÈME À PLAQUES MÉTALLIQUES THERMOÉLECTRIQUES

Auteurs

  • Hervé Klinklin BADAKA University polytechnica of Bucarest Author
  • DAMGOU MANI KONGNINE Faculty of Sciences, Department of Physics, Solar Energy Laboratory, University of Lome, Lome 01 BP 1515, Togo. Author
  • ALEXANRU M. MOREGA 3 Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, Romania. Author

DOI :

https://doi.org/10.59277/RRST-EE.2025.3.21

Mots-clés :

Pyrolyse de la biomasse, Simulation numérique, Analyse de données, Module thermoélectrique, Séchage à air chaud

Résumé

Ce travail présente une étude numérique de la pyrolyse du bois dans un carboniseur parallélépipédique équipé d'une cheminée et d'une isolation en argile pour améliorer le rendement en charbon de bois. Un système de récupération d'énergie thermique, composé de six plaques d'acier reliées par cinq tiges, a été intégré afin d'explorer le potentiel de production d'électricité. Les résultats de simulation indiquent que la température de sortie de la cheminée atteint environ 350 K, ce qui la rend adaptée au séchage ou au préchauffage de la biomasse. La face chaude de la plaque finale, destinée à accueillir un module thermoélectrique, peut atteindre une température de 443 K. Dans ces conditions, le module TEG1-PB-12611-6.0 peut générer jusqu'à 3,97 W.

Références

(1) P. Sun, H. Peng, Valorisation of biomass waste for sustainable Valorisation of biomass waste for sustainable bioenergy and biofuel production, Bioengineering, 10, 5, pp. 4–7, (2023).

(2) C. Xia, L. Cai, H. Zhang, L. Zuo, S. Q. Shi, and S. S. Lam, A review on the modeling and validation of biomass pyrolysis with a focus on product yield and composition, Biofuel Research Journal, 29, 1, pp. 1296–1315, (2021).

(3) J. Erkmen, H. Ibrahim, E. Kavci, and M. Sari, A new environmentally friendly insulating material designed from natural materials, Construction and Building Materials, 255, 1, pp. 119357–119364, (2020).

(4) L.M. Grajeda, L.M.Thompson, W. Arriaga, E. Canuz, S.B. Omer, M. Sage, E.A. Baumgartner, J.P. Bryan, J.P. McCracken, E ff ectiveness of gas and chimney biomass stoves for reducing household air pollution pregnancy exposure in Guatemala : sociodemographic effect modifiers, Environmental Research and Public Health, 17, 21, pp. 7723–7736, (2020).

(5) A. Anitha Angeline and J. Jayakumar, Analysis of (Bi2Te3-PbTe) hybrid thermoelectric generator for effective power generation, Int. Conf. Innov. Information, Embed. Commun. Syst. (ICIIECS), Karpagam College of Engineering in Coimbatore, Tamil Nadu, India, 2015.

(6) O. Üner, Y. Bayrak, The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax, Microporous Mesoporous Mater., 268, 1, pp. 225-234, (2018).

(7) M.W. Seo, H.M. Jeong, W.J. Lee, S.J. Yoon et al, Carbonization characteristics of biomass/coking coal blends for the application of bio-coke, Chem. Eng. J., 394, 1, pp. 124943–124952, (2020).

(8) F. Shafizadeh, P.P.S. Chin, Thermal deterioration of wood, Wood Technol. Chem. Asp., 43, 1, pp. 57–81, (1977).

(9) C. Di Blasi, Modeling Intra- and Extra-Particle Processes of Wood Fast Pyrolysis, AIChE J., 48, 10, pp. 2386–2397, (2002).

(10) W.C. Park, A. Atreya, H.R. Baum, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combust. Flame, 157, 3, pp. 481–494, (2010).

(11) J.S. Tumuluru, S. Sokhansanj, J.R. Hess, C.T. Wright, R.D. Boardman, A review on biomass torrefaction process and product properties for energy applications, Industrial Biotechnology, 7, 5, pp. 384–401, (2011).

(12) L. Chen, H. Feng, Z. Xie, F. Sun, "Disc-point" mass transfer constructal optimizations with Darcy and Hagen-Poiseuille flows in porous media, Appl. Math. Model., 38, 4, pp. 1288–1299, (2014).

(13) M. G. Gronli, M. C. Melaaen, Mathematical model for wood pyrolysis-comparison of experimental measurements with model predictions, Energy and Fuels, 14, 4, pp. 791–800, (2000).

(14) I.A. Badruddin, Azeem, T.M. Yunus Khan, M.A. Ali Baig, Heat Transfer in Porous Media: A Mini Review, Mater. Today Proc., 24, 1, pp. 1318–1321, (2020).

(15) R. B. Bates and A. F. Ghoniem, Modeling kinetics-transport interactions during biomass torrefaction: The effects of temperature, particle size, and moisture content, Fuel, 137, 1, pp. 216–229, (2014).

(16) H. Ma, L. He, G. Yu, Z. Yu, Natural convection heat transfer and fluid flow in a thermal chimney with multiple horizontally-alighned cylinders, Int. J. Heat Mass Transf., 183, 1, (2022).

(17) B. Liu, X. Liu, C. Lu, A. Godbole, G. Michal, L. Teng, Decompression of hydrogen—natural gas mixtures in high-pressure pipelines: CFD modelling using different equations of state, Int. J. Hydrogen Energy, 44, 14, pp. 7428–7437, (2019).

(18) K.P. Keboletse. F. Ntuli, O.P. Oladijo, Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies : a review, Int. J. Coal Sci. Technol., 8, 5, pp. 817–843, (2021).

(19) M.A. Abdullah, Improvement of the pyrolysis system by integrating solar energy-based preheating system, IOSR J. Mech. Civ. Eng. (IOSR-JMCE), 18, 3, pp. 25–30, (2021).

(20) J. López-Beceiro, A. M. Díaz-Díaz, A. Álvarez-García, J. Tarrío-Saavedra, S. Naya, The complexity of lignin thermal degradation in the isothermal context, Processes, 9, 7, (2021).

(21) N. Pervan, E. Mešić, and M. Čolić, Stress analysis of external fixator based on stainless steel and composite material, Int. J. Mech. Eng. Technol., 8, 1, pp. 189–199, (2017).

(22) A. Dhaundiyal, S.B. Singh, I. Bacskai, Mathematical modelling of pyrolysis of hardwood (acacia), Acta Technol. Agric., 23, 4, pp. 176–182, (2020).

(23) ***Comsol Multiphysics, v.6.3.

Téléchargements

Publiée

2025-08-30

Numéro

Rubrique

Termotechnique et termoénergétique

Comment citer

RÉCUPÉRATION DE CHALEUR LORS DE LA PYROLYSE DE LA BIOMASSE FOURNIE PAR UN SYSTÈME À PLAQUES MÉTALLIQUES THERMOÉLECTRIQUES. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(3), 409-414. https://doi.org/10.59277/RRST-EE.2025.3.21