ÉTUDE MICROMAGNETIQUE DES RÉSEAUX DE NANOFILS DE FER

Auteurs

  • CONSTANTIN DAVID National Institute for R & D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, Faculty of Electrical Engineering, Politehnica University of Bucharest 313 Splaiul Independenței, Bucharest Author
  • WILHELM KAPPEL National Institute for R & D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest Author
  • EROS-ALENXANDRU PĂTROI National Institute for R & D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest Author
  • EUGEN MANTA National Institute for R & D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest Author
  • VALENTIN MIDOI SC MEDAPTEH PLUS CERT SRL, 27 Șelimbăr, Măgurele, Ilfov Author

Mots-clés :

Courbes d'hystérésis, Modèle micromagnétique, Applications d'aimants permanents, Simulations numériques

Résumé

Les aimants permanents sont des composants essentiels de divers types de moteurs électriques, de générateurs et d'autres technologies importantes. Les aimants permanents les plus puissants sont constitués de métaux de terres rares. Des exemples de ces aimants de terres rares sont l'aimant néodyme-fer-bore (NdFeB) ou l'aimant samarium-cobalt (SmCo). Cependant, les aimants permanents riches en terres rares sont chers et thermiquement instables. Il serait extrêmement avantageux que des aimants permanents puissent être développés d'une manière ou d'une autre en utilisant des métaux de transition bon marché et thermiquement stables. Les réseaux de nanofils de cobalt ont été développés dans le passé par des méthodes chimiques et il a été constaté que ce type de système peut présenter de grandes coercivités allant jusqu'à près de 1 MA/m, qui peuvent devenir comparables aux aimants NdFeB/SmCo à haute température. Dans cet article, des simulations micromagnétiques sont utilisées pour étudier divers réseaux de nanofils de fer. Ainsi, on peut déterminer pourquoi ces assemblages donnent lieu à des propriétés magnétiques incroyables. L'avantage des simulations micromagnétiques est la capacité d'analyser une large gamme de géométries et de matériaux et d'avoir un aperçu de la physique derrière les propriétés magnétiques observées.

Références

(1) R. Boardman, Computer simulation studies of magnetic nanostructures, 2005.

(2) J. Leliaert, J. Mulkers, Tomorrow’s micromagnetic simulations, J. of Applied Physics, 125, pp. 180901, 2019.

(3) S. Bance, J. Fischbacher, T. Schrefl, I. Zins, G. Rieger and C. Cassignol, Micromagnetics of shape anisotropy based permanent magnets, J. of Magnetism and Magnetic Materials, 363, pp. 121-124, 2013.

(4) S. Mahalingam, B. Manikandan and S. Arockiaraj, Review – micromagnetic simulation using OOMMF and experimental investigations on nanocomposite magnets, J. of Physics: Conference Series, 1172, pp. 012070, 2019.

(5) A. Radulian, M. Maricaru, I. Nemoianu, R. Crețu, New solution of linear dc actuator with additional permanent magnets: working principle, design and testing, Revue Roumaine des Sciences Techniques - Serie Électrotechnique et Énergétique, 62, 1, pp. 3-7, 2017.

(6) R. Olaru, A. Arcire, C. Petrescu, New linear actuator with ferrofluid and permanent magnets, Revue Roumaine des Sciences Techniques – Serie Électrotechnique et Énergétique, 60, 2, pp. 113-121, 2014.

(7) M. Modreanu, M.-I. Andrei, M. Morega, T. Tiberiu, Brushless dc micro-motor with surface mounted permanent magnets, Revue Roumaine des Sciences Techniques – Serie Électrotechnique et Énergétique, 59, 3, pp. 237-247, 2014.

(8) R. Olaru, R. Gherca, C. Petrescu, Analysis and design of a vibration energy harvester using permanent magnets, Revue Roumaine des Sciences Techniques – Serie Électrotechnique et Énergétique, 59, 2, pp. 131-140, 2014.

(9) S. Agramunt-Puig, N. Del-Valle, E. Pellicer, J. Zhang, J. Nogues, C. Navau, A. Sanchez and J. Sort, Modeling the collective magnetic behavior of highly packed arrays of multi-segmented nanowires, New Journal of Physics, 18, p. 013026, 2016.

(10) M. Méndez, S. Gonzalez, V. Vega, J. Teixeira, B. Hernando, C. Luna, V. Prida, Ni-Co alloy and multisegmented Ni/Co nanowire arrays modulated in composition: structural characterization and magnetic properties, Crystals, 7, p. 66, 2017.

(11) J. Rial and M. Proenca, A novel design of a 3D racetrack memory based on functional segments in cylindrical nanowire arrays, Nanomaterials, 10, pp. 2403, 2020.

(12) E. Palmero, C. Bran, R. Real and M. Vázquez, Synthesis and magnetism of modulated FeCo-based nanowires, J. of Physics: Conference Series, 755, pp. 012001, 2016.

(13) A. C. Fischer, Integration and fabrication techniques for 3D micro- and nanodevices, 2012.

(14) I. Dubitskiy, A. Almekawy, E. Iashina, S. Sotnichuk, K. Napolskii, D. Menzel, A. Mistonov, Effect of interactions and non-uniform magnetic states on the magnetization reversal of iron nanowire arrays, J. of Superconductivity and Novel Magnetism, 34, pp. 539-549, 2020.

(15) F. Zighem, T. Maurer, F. Ott, G. Chaboussant, Dipolar interactions in arrays of ferromagnetic nanowires: a micromagnetic study, J. of Applied Physics, 109, 2010.

(16) G. Nguyen Vien, S. Rioual, F. Gloaguen, B. Rouvellou, B. Lescop, Study of the magnetization behavior of ferromagnetic nanowire array: Existence of growth defects revealed by micromagnetic simulations, J. of Magnetism and Magnetic Materials, 401, pp. 378-385, 2015.

(17) D.-L. Sun, J.-H. Gao, X.-Q. Zhang, Q. Zhan, W. He, Y. Sun, Z.-H. Cheng, "Contribution of magnetostatic interaction to magnetization reversal of Fe 3Pt nanowires arrays: A micromagnetic simulation," Journal of Magnetism and Magnetic, 321, pp. 2737-2741, 2009.

(18) W. Li, L. Zhao, Z. Liu, Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase, Frontiers of Materials Science, 12, , pp. 348-353, 2018.

(19) L. Zhang, Y. Zhang, Fabrication, and magnetic properties of Fe3O4 nanowire arrays in different diameters, J. of Magnetism and Magnetic Materials, 321, pp. L15-L20, 2009.

(20) K. Nielsch, R. Hertel, R. Wehrspohn, J. Barthel, U. Gosele, S. Fischer, H. Kronmüller, Switching behavior of single nanowires inside dense nickel nanowire arrays, IEEE Transactions on Magnetics, 38, pp. 2571-2573, 2002.

(21) T. Sorop, C. Untiedt, F. Luis, L. J. Jongh, M. Kröll, M. Raşa, Magnetization reversal of individual Fe nanowires in alumites studied by magnetic force microscopy, J. of Applied Physics, 93, pp. 7044-7046, 2003.

(22) Q. Liu, J. Wang, Z. Yan, D. Xue, The effect of diameter on micro-magnetic properties of Fe0.68Ni0.32 nanowire arrays, J. of Magnetism and Magnetic Materials, 278, pp. 323-327, 2004.

(23) C. Bran, Y. Ivanov, D. González Trabada, J. Tomkowicz, R. Real, O. Chubykalo-Fesenko, M. Vazquez, Structural dependence of magnetic properties in Co-based nanowires: experiments and micromagnetic simulations, IEEE Transactions on Magnetics, 49, pp. 4491-4497, 2013.

(24) Y. Ivanov, O. Chubykalo-Fesenko, Micromagnetic simulations of cylindrical magnetic nanowires, in Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications, pp. 423-448, 2015.

(25) H. Li, M. Yue, Y. Peng, Y. Li, Q. Wu, W. Liu, D. Zhang, Micromagnetic simulation of Co nanowires array, in IEEE International Magnetics Conference (INTERMAG), pp. 1-1, 2017.

(26) F. Ahmadi, M. Donahue, Y. Sozer, I. Tsukerman, Micromagnetic study of soft magnetic nanowires, AIP Advances, 9, p. 125047, 2019.

(27) M. Vazquez, Magnetic Nano- and Microwires, Woodhead Publishing Series in Electronic and Optical Materials, 2020.

(28) L. Spinu, A. Stancu, C. Radu, F. Li, J. Wiley, Method for magnetic characterization of nanowire structures, IEEE Transactions on Magnetics, vol. 40, pp. 2116 - 2118, 2004.

(29 C.-I. Dobrotă, A. Stancu, What does a first-order reversal curve diagram really mean? A study case: array of ferromagnetic nanowires, J. of Applied Physics, 113, p. 043928, 2013.

(30) F. Béron, D. Menard, A. Yelon, First-order reversal curve diagrams of magnetic entities with mean interaction field: A physical analysis perspective, J. of Applied Physics, 103, pp. 07D908-07D908, 2008.

(31) A. Rotaru, J.-H. Lim, D. Lenormand, A. Diaconu, J. Wiley, P. Postolache, A. Stancu, L. Spinu, Interactions and reversal-field memory in complex magnetic nanowire arrays, Phys. Rev. B, 84, 13, pp. 134431, 2011.

(32) L. Vivas, M. Vazquez, J. Escrig, S. Allende, D. Altbir, D. Leitao, J. Araujo, Magnetic anisotropy in CoNi nanowire arrays: analytical calculations and experiments, Physical Review B, 85, p. 035439, 2012.

(33) M. Salem, P. Sergelius, R. Corona, J. Escrig, D. Görlitz, K. Nielsch, Magnetic properties of cylindrical diameter modulated Ni 80Fe20 nanowires: interaction and coercive fields, Nanoscale, 5, pp. 3941-3947, 2013.

(34) H. Xiang, D. M. Jiang, J. C. Yao, Y. P. Zheng, W. Lu, G. Q. Li, H. Saito, S. Ishio, X. W. Tan, Y. Q. Lin, Micromagnetic simulations of magnetization reversal of iron nanowire, J. of Physics: Conference Series, 266, p. 012022, 2011.

(35) M. Stano, O. Fruchart, Magnetic nanowires and nanotubes, Handbook of Magnetic Materials, 27, pp. 155-267, 2018.

(36) C. Abert, Micromagnetics and spintronics: models and numerical methods, The European Physical Journal, B, 92, p. 120, 2019.

(37) M. Beg, R. Pepper, H. Fangohr, User interfaces for computational science: a domain specific language for OOMMF embedded in Python, AIP Advances, 7, 2016.

(38) M. Beg, R. A. Pepper, T. Kluyver, J. Mulkers, J. Leliaert, H. Fangohr, Ubermag/Ubermag: meta package for Ubermag project, Zenodo, https://doi.org/10.5281/ZENODO.3539496, 2019.

(39) H. Kim, C.-Y. You, Embedded object-oriented micromagnetic frame (OOMMF) for more flexible micromagnetic simulations, J. of Magnetics, 21, pp. 491-495, 2016.

(40) Y. Ivanov, M. Vázquez, O. Chubykalo-Fesenko, Magnetic reversal modes in cylindrical nanowires, J. of Physics D, Applied Physics, 46, 48, paper 48500, 2013.

(41) K. Gandha, K. Elkins, N. Poudyal, X. Liu, J. P. Liu, high energy product developed from cobalt nanowires, Scientific reports, 4, pp. 5345, 2014.

(42) T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J.-Y. Piquemal, G. Viau, Magnetic nanowires as permanent magnet materials, Applied Physics Letters Volume, 91, 17, pp. 172501, 2007.

(43) K. Gandha, J. Mohapatra, J. P. Liu, Coherent magnetization reversal and high magnetic coercivity in Co nanowire assemblies, J. of Magnetism and Magnetic Materials, 438, 2 pp. 41-45, 017.

(44) A. Bordianu, V. Ioniță, L. Petrescu, Micro-scale numerical simulation of the magnetic recording. Revue Roumaine des Sciences Techniques – Serie Électrotechnique et Énergétique, 57, 1, pp. 3-9, 2012.

(45) V. Ioniță, I. Covaliu, L. Petrescu, A. Bordianu, O. Tabără, Magnetic characterization of Fe3O4 nanoparticles used in biomaterials, Revue Roumaine des Sciences Techniques – Serie Électrotechnique et Énergétique, 57, 2, pp. 154-161, 2012.

Téléchargements

Publiée

2022-03-16

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

ÉTUDE MICROMAGNETIQUE DES RÉSEAUX DE NANOFILS DE FER. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(1), 9-13. https://journal.iem.pub.ro/rrst-ee/article/view/147