AMÉLIORATION DES PERFORMANCES TRANSITOIRES ET DE LA STABILITÉ DU NIVEAU DE LIQUIDE DANS UN SYSTÈME À TROIS RÉSERVOIRS À L'AIDE D'UN CONTRÔLEUR PID MODIFIÉ
DOI :
https://doi.org/10.59277/RRST-EE.2025.4.23Mots-clés :
Algorithme artificiel de colibri, Régulateur PID à ordre fractionnaire, Optimisation, Régulateur PID, Analyse de stabilité, Système à trois réservoirs à niveau de liquideRésumé
La gestion des niveaux de liquide dans les réservoirs industriels est cruciale, en particulier pour le mélange précis des composants. Les régulateurs PID traditionnels, bien que largement utilisés, présentent souvent des temps de stabilisation longs et des dépassements excessifs, ce qui peut affecter les performances du système. Cette étude propose un régulateur PID à ordre fractionnaire (FrOPID) optimisé à l'aide de l'algorithme artificiel modifié Hummingbird (MAHA) afin d'améliorer la stabilité et la réponse d'un système à trois réservoirs. L'efficacité du régulateur est évaluée dans des conditions variables de coefficient de vanne (Kv) et de section transversale du réservoir. Une analyse comparative avec des régulateurs PID avancés optimisés par métaheuristique confirme la supériorité du MAHA/FrOPID en termes de précision, de vitesse de réponse et de robustesse, ce qui en fait une solution très efficace pour le contrôle du niveau de liquide.
Références
(1) N.A. Selamat, N.A. Wahab, and S. Sahlan, Particle swarm optimization for multivariable PID controller tuning, In 2013 IEEE 9th International Colloquium on Signal Processing and its Applications, IEEE, pp. 170–175 (2013).
(2) M.W. Iruthayarajan and S. Baskar, Evolutionary algorithms based design of multivariable PID controller, Expert Systems with Applications, 36, 5, pp. 9159–9167 (2009).
(3) A. Idir, Y. Bensafia, K. Khettab, and L. Canale, Performance improvement of aircraft pitch angle control using a new reduced order fractionalized PID controller, Asian Journal of Control, 25, 4, pp. 2588–2603 (2023).
(4)A. Idir, Y. Bensafia, and L. Canale, Influence of approximation methods on the design of the novel low-order fractionalized PID controller for aircraft system, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46, 2, pp. 1–16 (2024).
(5) A. Idir, H. Akroum, S.A. Tadjer, and L. Canale, A comparative study of integer order PID, fractionalized order PID and fractional order PID controllers on a class of stable system, In 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), IEEE, pp. 1–6 (2013).
(6) K. Benaouicha, A. Idir, H. Akroum, and Y. Bensafia, Fractionalized order PID controller design for three tanks liquid level control, Studies in Engineering and Exact Sciences, 5, 2, pp. e8915 (2024).
(7) D. Gupta, V. Goyal, and J. Kumar, Comparative performance analysis of fractional-order nonlinear PID controller for complex surge tank system: tuning through machine learning control approach, Multimedia Tools and Applications, pp. 1–34 (2024).
(8) A. Idir, L. Canale, Y. Bensafia, and K. Khettab, Design and robust performance analysis of low-order approximation of fractional PID controller based on an IABC algorithm for an automatic voltage regulator system, Energies, 15, 23, pp. 8973 (2022).
(9) G. Murugaiyan, J. Gnanamalar, M. Narayanaperumal, and V. Muthuvel, Red fox-based fractional order fuzzy PID controller for smart LED driver circuit, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 4, pp. 395–400 (2023).
(10) A. Idir, L. Canale, S.A. Tadjer, and F. Chekired, High order approximation of fractional PID controller based on grey wolf optimization for DC motor, In 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), IEEE, pp. 1–6 (2022).
(11) M.A. Fellani and A.M. Gabaj, PID controller design for two tanks liquid level control system using Matlab, International Journal of Electrical and Computer Engineering, 5, 3, pp. 436 (2015).
(12) S.K. Singh, N. Katal, and S.G. Modani, Multi-objective optimization of PID controller for coupled-tank liquid-level control system using genetic algorithm, In Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), Springer India, pp. 59–66 (2014).
(13) R.K. Jatoth, A.K. Jain, and T. Phanindra, Liquid level control of three tank system using hybrid GA-PSO algorithm, In 2013 Nirma University International Conference on Engineering (NUiCONE), IEEE, pp. 1–7 (2013).
(14) A. Mukhtar, V.K. Tayal, and H.P. Singh, PSO optimized PID controller design for the process liquid level control, In 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), IEEE, pp. 590–593 (2019).
(15) F. Long, Y. Yao, Y. Zhou, and J. He, Simulation analysis of three-tank water tank level control system based on improved PSO-Fuzzy PID, In 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), IEEE, pp. 1833–1837 (2024).
(16) T.K. Teng, J.S. Shieh, and C.S. Chen, Genetic algorithms applied in online autotuning PID parameters of a liquid-level control system, Transactions of the Institute of Measurement and Control, 25, 5, pp. 433–450 (2003).
(17) H.S. Hafiz, N. Kulkarni, and M. Bakshi, Mathematical modeling of coupled tank interacting system for controlling water level using GWO and PSO optimization, CLEI Electronic Journal, 26, 2, pp. 7–1 (2023).
(18) F. Meng and J. Qi, Application of SSA-Fuzzy-PID in liquid level control systems, In 2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), IEEE, pp. 667–671 (2023).
(19) D. Izci and S. Ekinci, Optimizing three-tank liquid level control: insights from prairie dog optimization, International Journal of Robotics & Control Systems, 3, 3 (2023).
(20) A.G. Kottayathu Rajagopalan, S. Mahapatra, and S.R. Mahapatro, Advanced tree-seed optimization based fractional-order PID controller design for simplified decoupled industrial tank systems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 37, 2, e3228 (2024).
(21) X. Chen, G. Wu, W. Qiao, J. Fang, M. Jiang, and P. Ding, 3-tank system liquid level control using improved African vulture optimization algorithm, In 2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE), IEEE, pp. 635–641 (2024).
(22) J.G. Malar, V. Thiyagarajan, N.B.M. Selvan, and M.D. Raj, Electric vehicle onboard charging via Harris Hawks optimization-based fractional-order sliding mode controller, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 1, pp. 30–35 (2023).
(23) A. Moharam, M.A. El-Hosseini, and H.A. Ali, Design of optimal PID controller using hybrid differential evolution and particle swarm optimization with an aging leader and challengers, Applied Soft Computing, 38, pp. 727–737 (2016).
(24) D. Chouaibi and W. Chagra, A new hybrid optimization method used in predictive control of a nonlinear fractional model based on fractional Hammerstein structure, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 4, pp. 437–442 (2024).
(25) A. Kumar and R. Dhiman, Tuning of PID controller for liquid level tank system using intelligent techniques, International Journal of Computer Science and Technology, 2, 4, pp. 257–260 (2011).
(26) E. Eker, S. Ekinci, and D. Izci, Optimal PID controller design for liquid level tank via modified artificial hummingbird algorithm, In Computer Science (IDAP-2023), pp. 37–43 (2023).
(27) W. Zhao, L. Wang, and S. Mirjalili, Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications, Computer Methods in Applied Mechanics and Engineering, 388, pp. 114194 (2022).
(28) Z. Ousaadi, H. Akroum, and A. Idir, Robustness enhancement of fractionalized order proportional integral controller for speed control of indirect field-oriented control induction motor, Przeglad Elektrotechniczny, 2024, 3 (2024).
(29) S. Guedida, B. Tabbache, K. Nounou, and A. Idir, Reduced-order fractionalized controller for disturbance compensation based on direct torque control of DSIM with less harmonics, Electrica, 24, 2, pp. 450–462 (2024).
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2025

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.