ANALYSE ET VALIDATION EXPÉRIMENTALE D'UN CONVERTISSEUR COMBINÉ CC-CC NON ISOLÉ MODIFIÉ SEPIC-CUK
DOI :
https://doi.org/10.59277/RRST-EE.2025.3.14Mots-clés :
Dispositif expérimental, Convertisseur de puissance CC-CC intégré non isolé, Modèle MATLAB/Simulink, Courant d'inductance non nul, Contrainte de tension des composants semi-conducteurs, Gain de tension statique, Modes de fonctionnement en régime permanentRésumé
L'électricité peut être produite à partir de sources d'énergie non conventionnelles. Cependant, ces sources sont intermittentes et imprévisibles. Par conséquent, l'alimentation électrique du consommateur n'est pas continue. Cependant, la combinaison de deux ou plusieurs ressources non conventionnelles peut assurer la continuité de l'alimentation. La proposition de recherche présentée dans ce travail explore une structure de convertisseur de puissance CC-CC intégré non isolé, combinant en parallèle des configurations SEPIC (convertisseur à inductance primaire asymétrique) traditionnelles et Cuk à gain de tension amplifié. Les caractéristiques de la structure de conversion CC-CC proposée comprennent un courant non nul traversant les inductances, un nombre réduit d'inductances et de condensateurs dans la topologie, une contrainte de tension réduite sur les composants à base de semi-conducteurs et un gain de tension élévateur relativement élevé. Les modes de fonctionnement de la topologie sont explorés, ainsi que la dérivation du gain de tension statique. Afin de valider l'efficacité de la structure de convertisseur intégré proposée, un dispositif expérimental est développé et ses résultats sont comparés à ceux du modèle MATLAB/Simulink de la topologie.
Références
Y. Khan, F. Liu, Consumption of energy from conventional sources a challenge to the green environment: Evaluating the role of energy imports, and energy intensity in Australia, Environmental Science and Pollution Research, 30, pp. 22712-22727 (2023).
R. Kumar, K. Ojha, M.H. Ahmadi, R. Raj, M. Aliehyaei, A. Ahmadi, N. Nabipour, A review status on alternative arrangements of power generation energy resources and reserve in India, International Journal of Low-Carbon Technologies, 15, 2, pp. 224-240 (2020).
Erdiwansyah, Mahidin, H. Husin, Nasaruddin, M. Zaki, Muhibbuddin, A critical review of the integration of renewable energy sources with various technologies”, Protection and Control of Modern Power Systems, 6, 3, pp. 1-18 (2021).
J.I. Laveyne, D. Bozalakov, G.V. Eetvelde, L. Vandevelde, Impact of solar panel orientation on the integration of solar energy in low-voltage distribution grids, International Journal of Photoenergy, 2020, pp. 1-13 (2020).
T. Sutikno, H.S. Purnama, N.S. Widodo, P. Sanjeevikumar, M.R. Sahid, A review on non-isolated low-power DC-DC converter topologies with high output gain for solar photovoltaic system applications, Clean Energy, 6, 4, pp. 557-572 (2022).
F. Mumtaz, N.Z. Yahaya, S.T. Meraj, B. Singh, Ramani Kannan, O. Ibrahim, Review on non-isolated DC-DC converters and their control techniques for renewable energy applications, Ain Shams Engineering Journal, 12, 4, pp. 3747-3763 (2021).
S.U. Shin, An analysis of non-isolated DC-DC converter topologies with energy transfer media. Energies, 12, 8, pp. 1-19 (2019).
F.A. Abbas, T.A. Abdul-Jabbar, A.A. Obed, A. Kersten, M. Kuder, T. Weyh, A comprehensive review and analytical comparison of non-isolated DC-DC converters for fuel cell applications, Energies, 16, 8, pp. 1-34 (2023).
T. Sutikno, R.A. Aprilianto, H.S. Purnama, Application of non-isolated bidirectional DC-DC converters for renewable and sustainable energy systems: a review, Clean Energy, 7, 2, pp. 293-311 (2023).
J. Supriya, J.S. Rajashekar, A comprehensive review of various isolated DC-DC converter topologies associated with photovoltaic applications, Recent Advances in Electrical & Electronic Engineering, 15, 8, pp. 595-606 (2022).
H. Meshael, A. Elkhateb, R. Best, Topologies and design characteristics of isolated high step-up DC-DC converters for photovoltaic systems, Electronics, 12, 18, pp. 1-42 (2023).
D. Murali, K. Shruthi, A non-isolated modified Zeta converter-fed DC motor under load condition, Brazilian Archives of Biology and Technology, 67, 1, pp. 1-12 (2024).
P.P. Gupta, G.I. Kishore, R.K. Tripathi, Non-isolated high step-up in voltage DC-DC converter topology for renewable applications, Journal of Circuits, Systems and Computers, 30, 6, pp. 1-27 (2021).
J. Niu, Y. Tang, A family of single-switch wide-gain converters with low voltage stress, Energy Reports, 9, 10, pp. 1032-1041 (2023).
M. Zaid, S. Khan, M.D. Siddique, A. Sarwar, J. Ahmad, Z. Sarwer, A. Iqbal, A transformerless high gain dc–dc boost converter with reduced voltage stress, International Transactions on Electrical Energy Systems, 31, 5, pp. 1-17 (2021).
I. Alhurayyis, A. Elkhateb, D.J. Morrow, Isolated and non-isolated DC-to-DC converters for medium voltage DC networks: A review, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9, 6, pp. 7486-7500 (2021).
J. Gnanavadivel, K. Jayanthi, M. Nivethini, S.J. Thejhaswiniy, R. Ilakkiya, Implementation of non-isolated high-gain DC-DC converter for electric vehicle application, International Journal of Electronics, 111, 11, pp. 1-22 (2023).
H. Sugali, S. Sathyan, N.J. Merlin Mary, Design and analysis of quasi-resonant high-gain impedance source DC-DC converter for DC microgrid, International Journal of Electronics, 111, 4, pp. 1-21 (2023).
S. Saravanan, N.R. Babu, A modified high step-up non-isolated DC-DC converter for PV application, Journal of Applied Research and Technology, 15, 3, pp. 242-249 (2017).
M. Premkumar, U. Subramaniam, H.H. Alhelou, P. Siano, Design and development of non-isolated modified SEPIC DC-DC converter for high-step-up applications: Investigation and hardware implementation, Energies, 13, 15, pp. 1-27 (2020).
B. Zhu, J. Liu, Y. Liu, S. Zhi, Y. Zhao, A high-reliability SEPIC converter with reconfigurable voltage conversion gain, Energy Reports, 9, 7, pp. 523-531 (2023).
R. Gules, W.M. dos Santos, F.A. dos Reis, E.F.R. Romaneli, A.A. Badin, A modified SEPIC converter with high static gain for renewable applications, IEEE Transactions on Power Electronics, 29, 11, pp. 5860-5871 (2014).
B. Jyothi, P. Bhavana, B.T. Rao, M. Pushkarna, Kitmo, R. Djidimbele, Implementation of modified SEPIC converter for renewable energy built DC microgrids, International Journal of Photoenergy, 2023, pp. 1-13 (2023).
S. Gao, Y. Wang, Y. Guan, D. Xu, A high-frequency high voltage gain modified SEPIC with integrated inductors, IEEE Transactions on Industry Applications, 55, 6, pp. 7481-7490 (2019).
Z. Haider, A. Ulasyar, A. Khattak, H.S. Zad, A. Mohammad, A.A. Alahmadi, N. Ullah, Development and analysis of a novel high-gain CUK converter using voltage-multiplier units, Electronics, 11, 17, pp. 1-16 (2022).
K.D. Joseph, A.E. Daniel, A. Unnikrishnan, Modified interleaved Cuk converter with improved voltage gain and reduced THD, Arabian Journal for Science and Engineering, 48, 5, pp. 6137-6147 (2023).
H. Shayeghi, R. Mohajery, M. Hosseinpour, F. Sedaghati, N. Bizon, A transformer-less high voltage gain DC-DC converter based on Cuk converter and voltage-lift technique, Journal of Energy Management and Technology, 8, 1, pp. 23-34 (2024).
H. Chen, W.-m. Lin, W.-r. Liu, W. He, Tapped-inductor bi-directional Cuk converter with high step-up/down conversion ratio and its optimum design, Scientific Reports, 12, pp. 1-16 (2022).
K.A. Mahafzah, A.Q. Al-Shetwi, M.A. Hannan, T.S. Babu, N. Nwulu, A new Cuk-based DC-DC converter with improved efficiency and lower rated voltage of coupling capacitor, Sustainability, 15, 11, pp. 1-17 (2023).
D. Murali, A transformerless boost-modified Cuk combined single-switch DC-DC converter topology with enhanced voltage gain, Brazilian Archives of Biology and Technology, 66, 3, pp. 1-20 (2023).
K.A. Mahafzah, M.A. Obeidat, A. Mansour, E.R. Sanseverino, G. Zizzo, A new smart grid hybrid DC-DC converter with improved voltage gain and synchronized multiple outputs, Applied Sciences, 14, 6, pp. 1-18 (2024).
S. Ranganathan, A.N.D. Mohan, Formulation and analysis of single switch high gain hybrid DC to DC converter for high power applications, Electronics, 10, 19, pp. 1-14 (2021).
M. Karthikeyan, R. Elavarasu, P. Ramesh, C. Bharatiraja, P. Sanjeevikumar, L. Mihet-Popa, M. Mitolo, A hybridization of Cuk and Boost converter using single switch with higher voltage gain capability, Energies, 13, 9, pp. 1-24 (2020).
H. Li, L. Cheng, X. Sun, C. Li, High step-up combined boost-Cuk converter with switched-inductor, IET Power Electronics, 15, 15, pp. :1664-1674 (2022).
N. Priyadarshi, M.S. Bhaskar, S. Padmanaban, F. Blaabjerg, F. Azam, New CUK-SEPIC converter based photovoltaic power system with hybrid GSA-PSO algorithm employing MPPT for water pumping applications, IET Power Electronics, 13, 13, pp. 2824-2830 (2020).
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2025

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.