ANALYSE PAR ÉLÉMENTS FINIS D'UNE MACHINE SYNCHRONE FLEXIBLE À PÔLES SAILLANTS À DOUBLE VITESSE
DOI :
https://doi.org/10.59277/RRST-EE.2025.1.4Mots-clés :
Machine synchrone à deux vitesses, Analyse par éléments finis, Fonctionnement du moteur, Fonctionnement du générateurRésumé
Cet article traite de l'analyse des performances d'une machine synchrone à deux vitesses (MSV) à pôles saillants et à excitation continue, équipée d'un bobinage amortisseur. La MSV proposée peut fonctionner à deux vitesses lorsqu'elle est connectée au réseau. Le nombre de paires de pôles peut être ajusté en fonctionnement grâce à la conception spéciale des bobinages statorique et rotorique, qui peuvent commuter entre p = 1 et p = 2 paires de pôles (en ajustant simultanément les connexions des bobines statorique et rotorique). La présence du bobinage amortisseur facilite le démarrage automatique de la machine lorsqu'elle est connectée directement au réseau comme un moteur et le passage en douceur d'une vitesse à l'autre. Les calculs par éléments finis 2D utilisés pour estimer les régimes transitoires de la machine et déterminer ses caractéristiques spécifiques ont été réalisés à l'aide du logiciel professionnel Flux® dédié à l'analyse des champs électromagnétiques. La machine proposée a été analysée à la fois comme moteur et comme générateur.
Références
(1) M. Devi, V. Bagyaveereswaran, Electric motor systems: Relative study on diverse motors in the electric vehicles, Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia (2023).
(2) A.M. Lulhe, T.N. Date, A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV), International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India (2015).
(3) O. Toudert, F. Auger, A. Houari, M. Laghrouche, Novel rotor position extraction based on rotating high-frequency voltage injection for permanent magnet synchronous machine drives at low or zero speeds, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 2, pp. 188–193 (2023).
(4) B. Mokhtari, Enhancement ripples of a direct torque control applied to a permanent magnet synchronous motor by using a four-level multicellular inverter and a new reduced switching table, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 2, pp. 207–212 (2024).
(5) O. Craiu, T.I. Ichim, L. Popescu, FEM study of a synchronous motor with different permanent magnet topologies, U.P.B. Sci. Bull., Series C, 85, 1, pp. 261–274 (2023).
(6) K. Atamnia, A. Lebaroud, J.L. López, Open loop torque control based on look-up tables to analyse the power losses of the interior permanent magnet synchronous motor for electric vehicle application, U.P.B. Sci. Bull., Series C, 83, 3, pp. 187–198 (2021).
(7) H. Elsherbiny, M.K. Ahmed, M.A. Elwany, Efficiency optimized control of permanent-magnet synchronous motors for electric vehicles over the entire speed range, U.P.B. Sci. Bull., Series C, 83, 2, pp. 187–208 (2021).
(8) L. Zaaraoui, A. Mansouri, N. Smairi, NMOPSO: An improved multiobjective PSO algorithm for permanent magnet motor design, U.P.B. Sci. Bull., Series C, 84, 1, pp. 201–214 (2022).
(9) K. Yamashita, S. Nishikata, A simulation model of a self-excited three-phase synchronous generator for wind turbine generators, International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy (2016).
(10) H. Yin, X. Yang, X. Xie, W. Wang, D. Li, G. Zhang, Summary of research on synchronous generator excitation system, IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China (2023).
(11) K. Kovalev, N. Ivanov, E. Tulinova, Magnetic field distribution in the active zone of synchronous generators with electromagnetic excitation, International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), St. Petersburg, Russia (2017).
(12) Z. Luo, S. Meng, C. Lou, F. Bu, Design and analysis of high-power dual three-phase electric excitation synchronous generator with diode rectifiers, 10th International Conference on Electrical Engineering, Control and Robotics (EECR), Guangzhou, China (2024).
(13) M. Murataliyev, M. Degano, M. Di Nardo, N. Bianchi, C. Gerada, Synchronous reluctance machines: a comprehensive review and technology comparison, IEEE, 110, 3 (2022).
(14) B.L. Mbula, S.P.D. Chowdhury, Performance improvement of synchronous reluctance motors: A review, IEEE PES PowerAfrica, Accra, Ghana (2017).
(15) L. Veg, J. Laksar, Overview of technology, problems and comparison of high-speed synchronous reluctance machines, Proc. of Elektro, Mikulov, Czech Republic (2018).
(16) A.K. Maurya, M.K. Maheshwari, A.K. Gupta, Designing and modelling of switched reluctance motor with its characteristics analysis, Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India (2024).
(17) H.V. Kim, D.H. Kim, J.S. Lee, Comparison of flux-weakening control methods for wound field synchronous motor, IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA (2024).
(18) J.K. Nøland, S. Nuzzo, A. Tessarolo, E.F. Alves, Excitation system technologies for wound-field synchronous machines: survey of solutions and evolving trends, IEEE Access, 7, pp. 109699–109718 (2019).
(19) L. Rohith, B. Umanand, R. Subba, Pole changing wide speed range induction motor drive for electric vehicles, IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India (2018).
(20) S.H. Kim, T.U. Jung, A study on pole change method of capacitor-run single-phase induction motor, 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Republic of Korea (2021).
(21) X. Sun, T. Lei, R. Zhao, Z. Liu, Research on efficiency optimization for the induction motor by pole changing techniques, IEEE 5th International Electrical and Energy Conference (CIEEC), Nanjing, China (2022).
(22) T. Latif, M.Z.M. Jaffar, I. Husain, Loss minimization control of an electronic pole changing 4-pole/2-pole induction motor, IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada (2021).
(23) T. Latif, M.Z.M. Jaffar, I. Husain, Modeling and control of a 4-pole/8-pole induction motor for smooth torque production during electronic pole changing, IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA (2020).
(24) S. Dabral, S. Basak, C. Chakraborty, Regenerative braking efficiency enhancement using pole-changing induction motor, IECON – 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium (2022).
(25) S. Dabral, S. Basak, A new design technique for pole-changing induction motors considering drive cycle, IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON), SC, USA (2023).
(26) T. Latif, S. Agoro, M.Z.M. Jaffar, I. Husain, Control of a 4-Pole/2-pole electronic pole-changing induction motor for traction applications, IEEE Transactions on Industry Applications, 59, 6, pp. 6704–6714 (2023).
(27) R.M. Ionescu, G. Scutaru, I. Peter, S. Motoasca, A. Negoita, O. Plesa, The influence of the winding type on the noise level of two-speed three-phase induction motors, 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brașov, Romania (2012).
(28) L. Xu, J. Wang, Z. Cui, L. Zhou, S. Wang, Design and analysis of a novel two-speed line-start permanent magnet motor, 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia (2017).
(29) A.D. Aliabad, F. Ghoroghchian, Design and analysis of a two-speed line start synchronous motor: scheme one, IEEE Trans. on Energy Conversion, 31, 1, pp. 366–372 (2016).
(30) F. Ghoroghchian, A.D. Aliabad, E. Amiri, Two-speed line start permanent magnet synchronous motor with dual magnetic polarity, IEEE Trans. on Industry Applications, 54, 5, pp. 4268–4277 (2018).
(31) M. Tian, X. Wang, G. Li, Line-start permanent magnet synchronous motor starting capability improvement using pole-changing method, IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China (2016).
(32) C. Cantò, N. Bianchi, On the possibility to achieve a pole change in synchronous motors, IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA (2022).
(33) ***Flux® 9.30. User’s guide, CEDRAT (2006)
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2025

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.