EXAMEN COMPLET DES TECHNIQUES DE SUIVI DU POINT DE PUISSANCE MAXIMALE ET PROJET DE CONTRÔLEUR DE LOGIQUE FLOUE D'UN SYSTÈME D'ALIMENTATION ÉLECTRIQUE POUR NANO SATELLITE

Auteurs

  • ABDERRAHMANE SEDDJAR Centre de développement des satellites (Agence spatiale algérienne), Oran, Algérie Author
  • KAMEL DJAMEL EDDINE KERROUCHE Centre de développement des satellites (Agence spatiale algérienne), Oran, Algérie Author
  • FAIZA AREZKI Centre de développement des satellites (Agence spatiale algérienne), Oran, Algérie Author
  • NASSIMA KHORCHEF Centre de développement des satellites (Agence spatiale algérienne), Oran, Algérie Author

Mots-clés :

Logique floue, Suivi du point de puissance maximale, Perturber et observer, Augmentation de la conductance

Résumé

Les recherches de cet article portent sur les domaines liés au système d'alimentation électrique (EPS) utilisé pour les plateformes de nanosatellites avec une architecture électrique adaptée et une stratégie de contrôle efficace. Un aperçu des algorithmes pertinents de suivi du point de puissance maximale (MPPT) est présenté en vue de proposer une technique de contrôle plus appropriée. La principale contribution de cette recherche est la mise en œuvre d'une nouvelle stratégie de contrôle par logique floue (FLC), qui réduit considérablement les ondulations autour du point de puissance maximale (MPP) améliorant à la fois l'efficacité et la flexibilité de la convergence, ainsi que le temps de réponse. Une étude et une analyse comparatives sont présentées pour démontrer la performance et l'efficacité du FLC proposé. L'évaluation est effectuée en comparaison entre les méthodes les plus courantes (perturber et observer (P&O) et conductance incrémentale (INC)) utilisées pour MPPT. Les résultats obtenus sont très substantiels et montrent que la technique FLC proposée, par rapport aux autres techniques discutées dans cet article, indique l'extraction de la quantité de puissance moyenne la plus élevée et la plus stable dans différentes conditions environnementales spatiales.

Références

(1) W. Ley and R. Roder, Handbook of Space Technology, 2009.

(2) G. A. Landis, Tabulation of power-related satellite failure causes, 11th International Energy Conversion Conference, 2013.

(3) L. Kessler Slongo, S. Vega Martínez, B. Vale Barbosa Eiterer, E. Augusto Bezerra, Nanosatellite electrical power system architectures: Models, simulations, and tests, International Journal of Circuit Theory and Applications, 48, 12, pp. 2153-2189 (2020).

(4) A. Aoudeche, X. Zhao, et al., Design of a high-performance electrical power system for an earth observation nano-satellite, Proceedings of the International Conference on Electronics and Electrical Engineering Technology, ACM, 2018.

(5) A. Seddjar, K. D. E. Kerrouche, L. Wang, Simulation of the proposed combined fuzzy logic control for maximum power point tracking and battery charge regulation used in CubeSat, Archives of Electrical Engineering, 69, 3 pp. 521–543 (2020).

(6) K. Karrouche, L. Wang, and A. Aoudeche, Low-cost EPS for nanosatellites constellation of belt and road countries, Fourth IAA Conference on Dynamics and Control of Space Systems, 2018.

(7) M. R. Patel, The International Handbook of Space Technology, 2014.

(8) J. L. Wiley, R. W. James, Space Mission Analysis and Design.Third edition, 1999.

(9) L. Peng, Z. Jun, et al, (2017). Design and validation of modular MPPT electric power system for multi-U CubeSat, 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), 2017.

(10) Y. Gopal, K. Kumar, D. Birla, M. Lalwani, Banes and boons of perturb & observe, incremental conductance and modified Regula Falsi methods for sustainable PV energy generation, Journal of Power Technologies, 97, 1, pp. 35-43 (2017).

(11) A. Loukriz, M. Haddadi, et al., Simulation and experimental design of a new advanced variable step size incremental conductance MPPT algorithm for PV systems, ISA transactions, 62, pp. 30-38 (2016).

(12) B. Bendib and F. Karim, Advanced Fuzzy MPPT controller for a stand-alone PV system, Energy Procedia, 50, pp. 383-392 (2014).

(13) Y. Wang, Y. Yang, et al., An Advanced maximum power point tracking method for photovoltaic systems by using variable universe fuzzy logic control considering temperature variability, Electronics, 7, 12, p. 355 (2018).

(14) U. Yilmaz, A. Kircay, S. Borekci, PV system fuzzy logic MPPT method and PI control as a charge controller, Renewable and Sustainable Energy Reviews, 81, pp. 994-1001 (2018).

(15) S. Hassan, H. Li, et al., Neuro-fuzzy wavelet-based adaptive MPPT algorithm for photovoltaic systems, Energies, 10, 3, p. 394 (2017).

(16) A. Seddjar, N. Berrached, A fuzzy approach for a hybrid multi-mobile robot control architecture to maintain a specific formation during navigation., International Review of Automatic Control (IREACO), 8, 1, pp. 63-71 (2015).

(17) J.K. Shiau, Y.C. Wei, et al., Fuzzy controller for a voltage-regulated solar-powered MPPT system for hybrid power system applications, Energies, 8, 5, pp. 3292-3312 (2015).

(18) O. Bahri, E. G. Talbi, et al., A generic fuzzy approach for multi-objective optimization under uncertainty, Swarm and Evolutionary Computation, 40, pp. 166-183 (2018).

(19) R. Rahmani, M. Seyedmahmoudian, et al., Implementation of fuzzy logic maximum power point tracking controller for photovoltaic system, Am. J. Applied Sci, Citeseer, (2013).

(20) C.L. Liu, J.H. Chen, et al., An asymmetrical fuzzy-logic-control-based MPPT algorithm for photovoltaic systems, Energies, 7, 4, pp. 2177-2193 (2014).

(21) P.C. Cheng, B.R. Peng, et al., Optimization of a fuzzy-logic-control-based MPPT algorithm using the particle swarm optimization technique, Energies, 8, 6, pp. 5338-5360 (2015).

(22) M. Nabipour, M. Razaz, et al., A new MPPT scheme based on a novel fuzzy approach, Renewable and Sustainable Energy Reviews, 74, pp. 1147-1169 (2017).

(23) M.G. Villalva, J.R. Gazoli, E.R. Filho, Comprehensive approach to modeling and simulation of photovoltaic arrays, IEEE Transactions on Power Electronics, 24, 5, pp. 1198-1208 (2009).

(24) M. Theristis, T. S. O’Donovan, Electrical-thermal analysis of III–V triple-junction solar cells under variable spectra and ambient temperatures, Solar Energy, 118, pp. 533-546 (2015).

(25) L.E.P. Chenche, O.S.H. Mendoza, E.P. Bandarra Filho, Comparison of four methods for parameter estimation of mono-and multi-junction photovoltaic devices using experimental data, Renewable and Sustainable Energy Reviews, 81, pp. 2823-2838 (2018).

(26) G. Segev, G. Mittelman, A. Kribus, Equivalent circuit models for triple-junction concentrator solar cells, Solar Energy Materials and Solar Cells, 98, pp. 57-65 (2012).

(27) S. P. GmbH, 28% Triple Junction GaAs Solar Cell, Type: TJ Solar Cell 3G28C, A. SPACE, 2013.

(28) A. Seddjar, K.D.E. Kerrouche, N. Khorchef, Power system topology proposal of a high-altitude pseudo-satellite: sizing method, power budget modeling, and efficient power control, Advances in Electrical and Computer Engineering, 22, 1, pp. 47-56 (2022).

(29) G. Patel, D.B. Patel, K. M. Paghdal, Analysis of P&O MPPT algorithm for PV system, International Journal of Electrical and Electronics Engineering (IJEEE), 5, 6, pp. 1-10 (2016).

(30) M.A. Husain, A. Tariq, S. Hameed, M.S.B. Arif, A. Jain, Comparative assessment of maximum power point tracking procedures for photovoltaic systems, Green Energy & Environment, 2, 1, pp. 5-17 (2017).

(31) J. Ahmed, Z. Salam, An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency, Applied Energy, 150, pp. 97-108 (2015).

(32) A. Belkaid, I. Colak, K. Kayisli, Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions, Electrical Engineering, 99, 3, pp. 839-846 (2017).

(33) K. Hussein, I. Muta, T. Hoshino, M. Osakada, Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions, IEE Proceedings-Generation, Transmission and Distribution, 142, 1, pp. 59-64 (1995).

(34) S.A. Mohamed, M. Abd El Sattar, A comparative study of P&O and INC maximum power point tracking techniques for grid-connected PV systems, SN Applied Sciences, 1, 2, p. 174 (2019).

(35) F. Liu, S. Duan, F. Liu, B. Liu, Y. Kang, A variable step size INC MPPT method for PV systems, IEEE transactions on industrial electronics, 55, 7, pp. 2622-2628 (2008).

(36) C.-Y. Won et al., A new maximum power point tracker of photovoltaic arrays using fuzzy controller, Power Electronics Specialist Conference - PESC'94, 1999.

(37) X. Li, H. Wen, et al., A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application, Renewable energy, 130, pp. 416-427 (2019).

(38) Y.H. Liu, C.L. Liu, et al., Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast-changing environments, Solar Energy, 89, pp. 42-53 (2013).

(39) A. Bahgat, N. Helwa, et al., Maximum power point tracking controller for PV systems using neural networks, Renewable energy, 30, 8, pp. 1257-1268 (2005).

(40) L. M. Elobaid, A. K. Abdelsalam, et al., Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey, IET Renewable Power Generation, 9, 8, pp. 1043-1063 (2015).

(41) C. Shalini, G.R.S. Naga Kumar, S. Raja Sekhar, Analysis of hybrid ANN-P&O based MPPT controller for photovoltaic system, IJCTA, International Science Press, 10, 5, pp. 165-175 (2017).

(42) X. Jinbang, A. Shen, C. Yang, et al., ANN-based on inccond algorithm for MPP tracker, International Conference on Bio-inspired Computing: Theories and Application, 2011.

(43) A.M.Z. Alabedin, E.F. El-Saadany, M M.A. Salama, Maximum power point tracking for photovoltaic systems using fuzzy logic and artificial neural networks, PowerEnergy, IEEE, 2011.

(44) A. Harra, S. Messalti, Indirect hybrid fuzzy-P & O variable step size MPTT controller improving performances under fast-changing atmospheric conditions, 2018.

(45) K. Bataineh, N. Eid, A hybrid maximum power point tracking method for photovoltaic systems for dynamic weather conditions, Resources (2018).

(46) H. Mohammed Aslam, J. Abhinandan, T. Abu, A novel fast mutable duty (FMD) MPPT technique for solar PV system with reduced searching area, Journal of Renewable and Sustainable Energy, 8, 5, (2016).

(47) F. Mohamed A, E. Mohamed, N. Ahmed, Assessment of maximum power point tracking techniques for photovoltaic system applications, Journal of Renewable and Sustainable Energy, 7, 4, p. 042702 (2015).

(48) D. Shmilovitz, On the control of photovoltaic maximum power point tracker via output parameters, IEE Proceedings - Electric Power Applications, 152, pp. 239-248 (2015).

(49) P. Tsao, S. Sarhan, Distributed max power point tracking for photovoltaic arrays, 34th IEEE Photovoltaic Specialists Conference 2009.

(50) E.V. Solodovnik, S. Liu, R.A. Dougal, Power controller design for maximum power tracking in solar installations, 19, 5, pp. 1295- (2004).

(51) T. Takumi , T. Tadayoshi, A. Masatsugu, A. Yuji Maximum output control of photovoltaic (PV) array, Proc. of 35th Intersociety Energy Conversion Engineering Conference and Exhibit, 2000.

(52) P.C.M Carvalho., D.B. Riffle, R.S.T. Pontes, D.S. Olivera, Control method of a photovoltaic powered reverse osmosis plant without batteries based on maximum power point tracking, Proc. of IEEE/PES Transmission Distrib. Conf. Expo, Latin America, 2004.

(53) C.T. Pan, J.Y. Chen, C.P. Chu, Y. S. Huang, A fast maximum power point tracker for photovoltaic power systems, Proc. of 25th annual conference on IEEE Industrial Electronics Society, pp. 390-390, 2009.

(54) A.M. Jasim, Y. Shepetov, Maximum power point tracking method for subsatellite solar power working under partially shaded conditions, Aviacijno-kosmicna tehnika i tehnologia, Aerospace Technic and Technology, 6, 133, pp. 36-42 (2016).

(55) T.H. Kwan, X. Wu, Maximum power point tracking using a variable antecedent fuzzy logic controller, Solar Energy, 137, pp. 189-200 (2016).

(56) S.Y. Yeom, K.Y. Park, et al., Development of fuzzy logic-based MPPT and performance verification through EBA for satellite applications, Journal of the Korean Society for Aeronautical & Space Sciences, 42, 9, pp. 779-788 (2014).

(57) A.A. Allataifeh, K. Bataineh, M. Al-Khedher, Maximum power point tracking using fuzzy logic controller under partial conditions, Smart Grid and Renewable Energy, 6, pp. 1-13 (2015).

(58) A. Youssef, M.El Telbany, A. Zekry, Reconfigurable generic FPGA implementation of fuzzy logic controller for MPPT of PV systems, Renewable and Sustainable Energy Reviews, 82, pp. 1313-1319 (2018).

(59) S. Lalouni, D. Rekioua, T. Rekioua, E. Matagne, Fuzzy logic control of stand-alone photovoltaic system with battery storage, Journal of power Sources, 193, pp. 899-907 (2009).

(60) R. Rahim, Comparative analysis of membership function on Mamdani fuzzy inference system for decision making, Journal of Physics Conference Series, p. 012029, 2017.

(61) I. Iancu, A Mamdani type fuzzy logic controller, Fuzzy Logic: Controls, Concepts, Theories and Applications, pp. 325-350 (2012).

(62) E. Van Broekhoven, B. De Baets, Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions, Fuzzy sets and systems, 157, 7, pp. 904-918 (2006).

Téléchargements

Publiée

2022-07-01

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

EXAMEN COMPLET DES TECHNIQUES DE SUIVI DU POINT DE PUISSANCE MAXIMALE ET PROJET DE CONTRÔLEUR DE LOGIQUE FLOUE D’UN SYSTÈME D’ALIMENTATION ÉLECTRIQUE POUR NANO SATELLITE. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(2), 123-131. https://journal.iem.pub.ro/rrst-ee/article/view/120