UNE NOUVELLE MÉTHODE COMBINÉE POUR SUIVRE LE POINT GLOBAL DE PUISSANCE MAXIMALE DES SYSTÈMES PHOTOVOLTAÏQUES
Mots-clés :
Suivi global du point de puissance maximale, Algorithme d'optimisation de la sauterelle, Contrôle prédictif du modèle, Système photovoltaïque, Conditions d'ombrage partielRésumé
La caractéristique puissance-tension des systèmes photovoltaïques (PV) fonctionnant dans des conditions d'ombrage partiel (PSC) présente plusieurs points de puissance maximum locaux (MPP). Les méthodes conventionnelles de suivi du point de puissance maximale (MPPT) sont efficaces dans des conditions d'irradiance solaire uniformes. De plus, la puissance des systèmes PV peut être diminuée par la fluctuation aléatoire, l'oscillation et la vitesse lente de leur suivi de puissance. Pour surmonter ces problèmes, une nouvelle méthode combinée basée sur la métaheuristique Grasshopper Optimization Algorithm (GOA) et Model Predictive Controller (MPC) est proposée. Une série de simulations expérimentales ont été réalisées sur différents cas pour évaluer les performances de la méthode proposée et pour mieux préciser notre contribution, une étude comparative avec la méthode traditionnelle perturb and observe (P&O), PSO-based MPC (PSO-MPC), La méthode d'optimisation des essaims de particules (PSO) et l'algorithme d'optimisation des sauterelles (GOA) ont été mis en œuvre. Les résultats montrent que la méthode proposée surpasse de manière significative les méthodes concurrentes telles que PSO, PSO-MPC et GOA en ce qui concerne le temps de suivi, l'efficacité de conversion de puissance et les oscillations de la puissance de sortie PV.
Références
(1) A.A. F Mirza, Q Ling, M.Y Javed, M Mansoor, Novel MPPT techniques for photovoltaic systems under uniform irradiance and Partial shading, Solar Energy journal, 184, pp. 628–648 (2019).
(2) A. Attou, A. Massoum, M. Chadli, Comparison study of two tracking methods for photovoltaic systems, Rev. Roum. Sci. Techn. – Electrotechn. Energ., 60, 2, pp. 205–214 (2015).
(3) B. Bendib, H. Belmili, F. Krim, A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic system, Renewable and Sustainable Energy Reviews Journal, 45, pp. 637–648 (2015).
(4) U Yilmaz, A. Kircayand, S. Borekci, PV system fuzzy logic MPPT method and PI control as a charge controller, Renewable and Sustainable Energy Reviews (81): 994–1001(2018).
(5) N. Kacimi, S.Grouni, A. Idir, M.S. Boucherit, New improved hybrid MPPT based on neural network-model predictive control-Kalman-filter for photovoltaic system, Indonesian Journal of Electrical Engineering and Computer Science, 20, 3, pp. 1230-1241 (2020).
(6) H. Deboucha, S.L. Belaid, Improved incremental conductance maximum power point tracking algorithm using fuzzy logic controller for photovoltaic system, Rev. Roum. Sci. Techn. – Electrotechn. Energ., 62, 4, pp. 381–387 (2017).
(7) S.P. Bihari, P.K. Sadhu, S. Das, P. Arvind, A. Gupta, Design and implementation of a photovoltaic wind hybrid system with the assessment of fuzzy logic maximum power point technique, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 64, 3, pp. 235–240, (2019).
(8) H.A. Azzeddine, M. Tioursi, D.-E. Chaouch, B. Khiari, An offline trained artificial neural network to predict a photovoltaic panel maximum power point, Rev. Roum. Sci. Techn. – Electrotechn. Energ., 61, 3, pp. 255–257 (2017).
(9) S Veerapen, H. Wen, X. Li,Y. Du, Y. Yang, Y. Wang, W. Xiao, A novel global maximum power point tracking algorithm for photovoltaic system with variable perturbation frequency and zero oscillation, Solar Energy Journal, 181, pp. 345–356 (2019).
(10) T. Guan et al., Global maximum power point tracking algorithm for solar power system, Pan JS., Li J., Tsai PW., Jain L. (eds) Advances in Intelligent Information Hiding and Multimedia Signal Processing. Smart Innovation, Systems, and Technologies, Springer, Singapore, 157, (2020).
(11) H.D. Liu et al., A GMPPT algorithm for preventing the LMPP problems based on trend line transformation technique, Solar Energy, 198, pp. 53-67 (2020).
(12) K Sundareswaran, V. Vigneshkumar, S Palani, Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions, Renewable Energy Journal, 75, pp. 308-317 (2015).
(13) A. Al-Gizi, A. Craciunescu, M.A. Fadel, M. Louzazni, A new hybrid algorithm for photovoltaic maximum power point tracking under partial shading conditions, Rev. Roum. Sci. Techn. – Electrotechn. Energ., 63, 1, pp. 52–57 (2018).
(14) Z. Amokrane, M. Haddadi, N.O. Cherchali, A new method of tracing the characteristic of photovoltaic generators under real operating conditions, Rev. Roum. Sci. Techn. – Electrotechn. Energ., 62, 3, pp. 276–281 (2017).
(15) C. Ahmed, M. Cherkaoui, M. Mokhlis, PSO-SMC controller based GMPPT technique for photovoltaic panel under partial shading effect, International Journal of Intelligent Engineering and Systems, 13, 2, pp. 307–316 (2020).
(16) A. Fathy, O. El-baksawi, Grasshopper optimization algorithm for extracting maximum power from wind turbine installed in Al-Jouf region, J. Renewable Sustainable Energy, 11, 033303. (2019).
(17) N.M. Amin, A.M. Soliman, H.M Hasanien, A.Y. Abdelaziz, Grasshopper optimization algorithm-based PI controller scheme for performance enhancement of a grid‑connected wind generator, J. of Control, Automation and Electrical Systems, 31, pp. 393–401, (2020).
(18) S.A. Tadjer, A. Idir, F. Chekired, Comparative performance evaluation of four photovoltaic technologies in Saharian climates of Algeria: ghardaïa pilot station, Indonesian Journal of Electrical Engineering and Computer Science, 18, 2, pp. 586-598 (2020).