ÉVALUATION STRATÉGIQUE DU FLUX DE CHARGE POUR UN MICRO-RÉSEAU DE NAVIRE AVEC INTÉGRATION DE L'ÉNERGIE PHOTOVOLTAÏQUE
DOI :
https://doi.org/10.59277/RRST-EE.2025.3.19Mots-clés :
Solar energy; Load flow analysis; Array; Circuit; Modelling; Photo-Voltaic Panel; Power managementRésumé
Les navires sont l'un des principaux modes de transport utilisés dans le monde. La possibilité d'une extinction prochaine des combustibles fossiles, combinée à la nécessité de réduire la pollution, rend le recours aux énergies renouvelables incontournable. Pour améliorer la qualité de l'air, il est impératif de minimiser les émissions de CO2. Il est essentiel d'utiliser une source d'énergie propre pour réduire les émissions de carbone. L'objectif principal est de promouvoir une énergie propre et verte pour les transports. La combustion des combustibles fossiles est l'un des principaux contributeurs au réchauffement climatique. Cet article propose d'utiliser l'énergie solaire à bord des navires pour produire de l'électricité, améliorant ainsi la fiabilité et la durabilité. Dans ce travail, une analyse du flux de charge primaire d'un réseau électrique embarqué de 18 bus est réalisée à l'aide de MATLAB/Simulink. Les résultats obtenus sont utilisés pour concevoir un panneau solaire photovoltaïque adapté aux besoins de charge. Ce modèle améliore l'efficacité et la fiabilité du système électrique du navire, lui permettant d'alimenter toutes les charges électriques à bord.
Références
(1) N. Rojjana, W. Rattanawong, V. Vongmanee, Integration of Maritime Management Systems to Reduce CO2 Emissions in Sustainability, 27th International Computer Science and Engineering Conference, ICSEC, pp. 457–460 (2023).
(2) J.J. Corbett, Updated emissions from ocean shipping, J Geophys Res, 108 (2003).
(3) S.H. Hong, D.M. Kim, S.J. Kim, Power control strategy optimization to improve energy efficiency of the hybrid electric propulsion ship, IEEE Access, 12, pp. 22534–22545 (2024).
(4) S. Wen, T. Zhao, Y. Tang, Y. Xu, M. Zhu, Y. Huang, A joint photovoltaic-dependent navigation routing and energy storage system sizing scheme for more efficient all-electric ships, IEEE Transactions on Transportation Electrification, 6, pp. 1279–1289 (2020).
(5) A.T. Adel Yahiaoui, An efficient study of Pv – Wind - Battery – Electrolyzer - H2 – Tank - Fc for a remote area electrification, Rev. Roum. Sci. Techn. – Série Électrotechn. et Énerg. (2024).
(6) C. Guo, Y. Sun, C. Yuan, X. Yan, Y. Wang, Q. Jiang, Research on power load flow calculation for photovoltaic-ship power system based on PSAT, International Conference on Renewable Energy Research and Applications, ICRERA, pp. 443–448 (2015).
(7) M. Gaber, S.H. El-Banna, M.S. Hamad, M. Eldabah, Performance enhancement of ship hybrid power system using photovoltaic arrays, IEEE PES/IAS Power Africa (2020).
(8) N. Zohrabi, J. Shi, S. Abdelwahed, An overview of design specifications and requirements for the MVDC shipboard power system, International Journal of Electrical Power and Energy Systems, 104, pp. 680–693 (2019).
(9) N. Djagarov, D. Tsvetanov, Z. Grozdev, J. Djagarova, Mathematical model of a ship power system with DC power distribution system, IEEE International Conference on Environment and Electrical Engineering, IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe, pp. 1–8 (2022).
(10) C. Park, B. Jeong, P. Zhou, H. Jang, S. Kim, H. Jeon, D. Nam, A. Rashedi, Live-Life cycle assessment of the electric propulsion ship using solar PV, Appl Energy, 309 (2022).
(11) G.S. Spagnolo, D. Papalillo, A. Martocchia, G. Makary, Solar-Electric Boat, J Transp Technol, 2, pp. 144–149 (2012).
(12) S.M. Lutful Kabir, I. Alam, M. Rezwan Khan, M.S. Hossain, K.S. Rahman, N. Amin, Solar powered ferry boat for the rural area of Bangladesh, International Conference on Advances in Electrical, Electronic and Systems Engineering, ICAEES, pp. 38–42 (2016).
(13) E. Nivolianiti, Y.L. Karnavas, J.F. Charpentier, Energy management of shipboard microgrids integrating energy storage systems: A review, Renewable and Sustainable Energy Reviews, 189, pp. 114012 (2024).
(14) T.L. Baldwin, S.A. Lewis, Distribution load flow methods for shipboard power systems, IEEE Trans Ind Appl, 40, pp. 1183–1190 (2004).
(15) K. L. Butler, N.D.R. Sarma, V.R. Prasad, Network reconfiguration for service restoration in shipboard power distribution systems, Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2, pp. 870 (2002).
(16) H. Mohamad, Z. Zakaria, M.Z. Bin Mazlan, Development of GUI Power System Load Flow Analysis tool based on Newton Raphson method, IEEE 7th International Conference on Engineering Education, ICEED, pp. 29–34 (2016).
(17) S. Chatterjee, S. Mandal, A novel comparison of gauss-seidel and Newton- raphson methods for load flow analysis, International Conference on Power and Embedded Drive Control, ICPEDC, pp. 1–7 (2017).
(18) A. Nur, A. Kaygusuz, Load Flow Analysis With Newton–Raphson and Gauss–Seidel Methods in a Hybrid AC/DC System, IEEE Canadian Journal of Electrical and Computer Engineering, 44, pp. 529–536 (2021).
(19) Ç. Karatuğ, Y. Durmuşoğlu, Design of a solar photovoltaic system for a Ro-Ro ship and estimation of performance analysis: A case study, Solar Energy, 207, pp. 1259–1268 (2020).
(20) A. Nur, A. Kaygusuz, Load flow analysis with Newton–Raphson and Gauss–Seidel methods in a hybrid AC/DC system, IEEE Canadian Journal of Electrical and Computer Engineering, 44, pp. 529–536 (2021).
(21) C.H. Han, Strategies to reduce air pollution in shipping industry, Asian Journal of Shipping and Logistics, 26, pp. 7–29 (2010).
(22) A.W. Hussein, M.W. Ahmed, Solar Energy : Solution To Fuel Dilemma, pp. 99–108 (2014).
(23) I. Kobougias, E. Tatakis, J. Prousalidis, PV systems installed in marine vessels: Technologies and specifications, Advances in Power Electronics (2013).
(24) Y. Zhang, C. Yuan, Research on the synergy of solar-sail ship with route optimization, ICTIS 3rd International Conference on Transportation Information and Safety, Proceedings, pp. 447–450 (2015).
(25) A. Kurniawan, A review of solar-powered boat development, IPTEK The Journal for Technology and Science, 27 (2016).
(26) Y. Oubbati, B. Khalil Oubbati, A. Rabhi, S. Arif, Experimental analysis of hybrid energy storage system based on nonlinear control strategy, Rev. Roum. Sci. Techn. – Série Électrotechn. et Énerg. (2023).
(27) M.G. Villalva, J.R. Gazoli, E. Ruppert Filho, Modeling and circuit-based simulation of photovoltaic arrays, 2009 Brazilian Power Electronics Conference, COBEP2009, pp. 1244–1254 (2009).
(28) Q. Shen, B. Ramachandran, S.K. Srivastava, M. Andrus, D.A. Cartes, Power and energy management in integrated power system, IEEE Electric Ship Technologies Symposium, ESTS, pp. 414–419 (2011).
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2025

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.