MEG AND PET IMAGES-BASED BRAIN TUMOR DETECTION USING KAPUR’S OTSU SEGMENTATION AND SOOTY OPTIMIZED MOBILENET CLASSIFICATION

Authors

  • AHILAN APPATHURAI PSN College of Engineering and Technology, Tirunelveli, India. Author
  • ANLIN SAHAYA INFANT TINU Anna University, Chennai, India. Author
  • MUTHUKUMARAN NARAYANAPERUMAL Sri Eshwar College of Engineering, Coimbatore, India. Author

DOI:

https://doi.org/10.59277/RRST-EE.2024.69.3.18

Keywords:

Brain tumor detection, Hybrid hexagonal features, MEG and PET images, Deep learning, Kapur’s Otsu threshold algorithm, Sooty optimization-based MobileNet

Abstract

Deep learning techniques have revolutionized medical image analysis recently, particularly in brain tumor (BT) detection. A comprehensive overview of the advancements and challenges associated with employing deep learning methodologies for the accurate and timely detection of BT. This work proposes a novel brain hybrid hexagonal mobile network (BH2Mnet) to identify benign and malignant tumors using MEG and PET images. An adaptive bilateral filter (ABF) is used as a de-noising for input images to eliminate noise artifacts. Eliminating the skull and outer cortical regions, a process known as "skull stripping" is utilized to enhance the number of training images. The de-noised images are segmented to detect the BT using Kapur's Otsu threshold (KOT) algorithm. Based on these segmented tumors, hexagonal feature sets with and without segmentation masks are produced using hybrid hexagonal features (HHF). Finally, the Sooty optimization-based MobileNet classifier is employed to classify the BT into benign, malignant cases. It was determined that the proposed BH2Mnet approach was 99.21 % accurate in classifying data. According to the proposed BH2Mnet NS-CNN, the total accuracy is enhanced by 1.67 %, 2.69 %, and 4.11 % compared to hybrid DAE, BFC, Deep CNN, and Neutrosophy.

References

(1) A. Hossain, M.T. Islam, S.K. Abdul Rahim, M.A. Rahman, T. Rahman, H. Arshad, A. Khandakar, M.A. Ayari, M.E. Chowdhury, A lightweight deep learning based microwave brain image network model for brain tumor classification using reconstructed microwave brain (RMB) images, Biosensors, 13, 2, pp. 238 (2023).

(2) R. Sundarasekar, A. Appathurai, Efficient brain tumor detection and classification using magnetic resonance imaging, Biomedical Physics & Engineering Express, 7, 5, 055007 (2021).

(3) M.K. Islam, M.S. Ali, M.S. Miah, M.M. Rahman, M.S. Alam, M.A. Hossain, Brain tumor detection in MR image using superpixels, principal component analysis and template-based K-means clustering algorithm, Machine Learning with Applications, 5, 100044 (2021).

(4) E. Porumb-Andrese, C.F. Costea, G. Macovei, G.F. Dumitrescu, L.A. Blaj, I. Prutianu, A.I. Cucu, Humps and bumps of head: review of meningiomas of the scalp, Romanian Journal of Morphology and Embryology, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 64, 4, pp. 467–473 (2023).

(5) S. Hussain, I. Mubeen, N. Ullah, S.S.U.D. Shah, B.A. Khan, M. Zahoor, M.A. Sultan, Modern diagnostic imaging technique applications and risk factors in the medical field: a review, BioMed Research International (2022).

(6) A.V. Reddy, P.K. Mallick, B. Srinivasa Rao, P. Kanakamedala, An efficient brain tumor classification using MRI images with hybrid deep intelligence model, The Imaging Science Journal, 1–15 (2023).

(7) M.B. Coomans, S.D. van der Linden, K. Gehring, M.J. Taphoorn, Treatment of cognitive deficits in brain tumour patients: current status and future directions, Current opinion in oncology, 31, 6, pp. 540 (2019).

(8) A.I. Cucu, C.F. Costea, G. Macovei, G.F. Dumitrescu, A. Sava, L.A. Blaj, I. Prutianu, E. Porumb-Andrese, C.G. Dascălu, M. Coşman, I. Poeată, Clinicopathological characteristics and prognostic factors of atypical meningiomas with bone invasion: a retrospective analysis of nine cases and literature review, Romanian Journal of Morphology and Embryology, Revue Roumaine de Morphologie et Embryologie, 64, 4, pp. 509–515 (2023).

(9) S. Li, C. Wang, J. Chen, Y. Lan, W. Zhang, Z. Kang, Y. Zheng, R. Zhang, J. Yu, W. Li, Signaling pathways in brain tumors and therapeutic interventions, Signal Transduction and Targeted Therapy, 8, 1, pp. 8 (2023).

(10) A. Ramaiah, P.D. Balasubramanian, A. Appathurai, N.A. Muthukumaran, Detection of Parkinson's disease via Clifford gradient-based recurrent neural network using multi-dimensional data, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 1, pp.103–108 (2024).

(11) V.V.S. Sasank, S. Venkateswarlu, hybridized deep neural network using adaptive rain optimizer algorithm for multi-grade brain tumor classification of MRI images, Digital Technologies Research and Applications, 1, 1, pp. 14–31 (2022).

(12) K.S. Rahul, Hybrid Model Implementation for Brain Tumor Detection System using Deep Neural Networks, International Journal for Research in Applied Science & Engineering Technology (IJRASET), 8, 12, pp. 281–285 (2020).

(13) D.P. Kruti, Medical Image Processing, IJSCUB, 12, 4, pp. 646–652 (2022).

(14) G.G. Tolun, Y.A. Kaplan, Development of backpropagation algorithm for estimating solar radiation: a case study in Turkey, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 3, pp. 313–316 (2023).

(15) S.K. Zhou, H. Greenspan, C. Davatzikos, J.S. Duncan, B. van Ginneken, A. Madabhushi, R.M. Summers, A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises, Proceedings of the IEEE, 109, 5, pp. 820–838 (2021).

(16) A. Topor, D. Ulieru, C. Ravariu, F. Babarada, Development of a new one-eye implant by 3D bioprinting technique, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 2, pp. 247–250 (2023).

(17) M.A. Khan, I. Ashraf, M. Alhaisoni, R. Damaševičius, R. Scherer, A. Rehman, S.A.C. Bukhari, Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists, Diagnostics, 10, 8, pp. 565 (2020).

(18) E. Cargnelutti, B. Tomasino, Pre-operative functional mapping in patients with brain tumors by fMRI and MEG: advantages and disadvantages in the use of one technique over the other, Life, 13, 3, pp. 609 (2023).

(19) M. Thayumanavan, A. Ramasamy, An efficient approach for brain tumor detection and segmentation in MR brain images using random forest classifier, Concurrent Eng., 29, 3, pp. 266–274 (2021).

(20) P.S. Raja, Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach, Biocybern. Biomed. Eng., 40, 1, pp. 440–453 (2020).

(21) F.J. Díaz-Pernas, M. Martínez-Zarzuela, M. Antón-Rodríguez, D. González-Ortega, A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network, Healthcare, 9, 2, p. pp. 153 (2021).

(22) J. Kang, Z. Ullah, J. Gwak, MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers, Sens, 21, 6, pp. 2222 (2021).

(23) F. Özyurt, E. Sert, E. Avci, E. Dogantekin, Brain tumor detection based on convolutional neural network with neutrosophic expert maximum fuzzy sure entropy, Measurement, 147, 106830 (2019).

(24) G.S. Tandel, A. Tiwari, O.G. Kakde, Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification, Comput. Biol. Med., 135, 104564 (2021).

(25) C. Yan, J. Ding, H. Zhang, K. Tong, B. Hua, S. Shi, SEResU-Net for Multimodal Brain Tumor Segmentation, IEEE Access, 10, pp. 117033–117044 (2022).

(26) S. Kuraparthi, M.K. Reddy, C.N. Sujatha, H. Valiveti, C. Duggineni, M. Kollati, P. Kora, Brain tumor classification of MRI images using deep convolutional neural network, Traitement du Signal, 38, 4, pp. 1171–1179 (2021).

(27) A. Singh, A. Sharma, S. Rajput, A.K. Mondal, A. Bose, M. Ram, Parameter extraction of solar module using the sooty tern optimization algorithm, Electronics, 11, 4, pp. 564 (2022).

(28) T.H. Arfan, M. Hayaty, A. Hadinegoro, Classification of brain tumours types based on MRI images using MobileNet, 2nd International Conference on Innovative and Creative Information Technology (ICITech) IEEE, pp. 69–73 (2021).

(29) L.J. Ahmed, P.M. Bruntha, S. Dhanasekar, V. Chitra, D. Balaji, N. Senathipathi, An improvised image registration technique for brain tumor identification and segmentation using ANN Approach, 6th International Conference on Devices, Circuits and Systems (ICDCS) IEEE pp. 80–84 (2022).

(30) S. Gnana Sophia, K.K. Thanammal, S.S. Sujatha, Secure storage of lung brain multi-modal medical images using DNA homomorphic encryption, International Journal of Current Bio-Medical Engineering, 1, 1, pp. 16–22 (2023).

(31) S. Karpakam, N. Senthilkumar, R. Kishorekumar, U. Ramani, P. Malini, S. Irfanbasha, Investigation of brain tumor recognition and classification using deep learning in medical image processing, International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) IEEE, pp. 185–188 (2022).

(32) A. Jegatheesh, N. Kopperundevi, M.A.A.S.I. Tinu, Brain aneurysm detection via firefly optimized spiking neural network, International Journal of Current Bio-Medical Engineering, 1, 1, pp. 23–29 (2023).

Downloads

Published

29.09.2024

Issue

Section

Génie biomédical | Biomedical Engineering

How to Cite

MEG AND PET IMAGES-BASED BRAIN TUMOR DETECTION USING KAPUR’S OTSU SEGMENTATION AND SOOTY OPTIMIZED MOBILENET CLASSIFICATION. (2024). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 69(3), 359-364. https://doi.org/10.59277/RRST-EE.2024.69.3.18