CONTRIBUTION TO THE DESIGN OF INVERTER CONVERTERS FOR HEATING AND WELDING AT HIGHER FREQUENCIES

Authors

  • MIROSLAV MILIĆEVIĆ University of Belgrade, High Technical School, Bul. Doktora Z. Djindjica 152a, 11000 Beograd, Serbia Author
  • VALENTINA NEJKOVIĆ University of Nis, Faculty of Electronic Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia Author

DOI:

https://doi.org/10.59277/RRST-EE.2023.4.4

Keywords:

Power supplies; Energy conversion; Power transistors; Inverters; Converters

Abstract

The paper shows a significant contribution to analytical calculations of half-bridge and full-bridge inverter parameters, aiming to facilitate the operating process itself while designing systems like these. Attempts have been made within the well-known literature to precisely calculate the waveforms of characteristic currents and voltages of the inverter. Due to its complexity, exact explicit analytical forms have yet to be found, but instead, approximate forms were found. Large formulae for inverter currents and voltages prevented them from being used as an inverter project solution. The paper deals with simple analytical dependences for inverters, with a necessary accuracy from the aspect of engineering practice, that can also be directly implemented into calculations for characteristic inverter components and parameters. To confirm the new analytical expressions and method, the paper presents two interesting inverters that can be applied.

References

(1) P. Wood, Switching Power Converters, Van Nostrand Reinhold, New York (1981).

(2) B.P. Bedford, Principles of Inverter Circuits, John Wiley, New York (1964).

(3) B.P. Bedford, R. Hoft, Teorija avtonomnih invertorov, (Russian edition) Moscow, Energiia (1969).

(4) H.M. Rashid, Power Electronics: circuits, devices, and applications, 2nd Ed., Prentice-Hall International, Englewood Cliffs, New Jersey (1993).

(5) T. Brodić, Power Electronics (in Bosnian: Energetska Elektronika), Svjetlost, Sarajevo, Bosnia & Herzegovina (1990).

(6) C.W. Lander, Power Electronics, 2nd Ed., McGraw-Hill, New York (1987).

(7) T. Todorov, D. Aleksiev, N. Madjarov, D. Ivanov, Autonomous Invert¬ers, (in Bulgarian) Gabrovo, Bulgaria (1996).

(8) I. Senko, T. Todorov, Devices of Power Electronics, Gabrovo, Bulgaria, (in Bulgarian) (1975).

(9) T. Todorov, Development and introduction of methods of analysis and calculations of the characteristics of autonomous inverters in devices for inductive heating, (in Russian) Doctoral thesis in technical science, Leningrad-Russia: Polytechnics Institute “M.I. Kalinina” (1973).

(10) H. Yu, B-M. Song, J-S. Lai, Design of a novel ZVT soft-switching chopper, IEEE Trans. on Power Electronics, 17, 1, pp. 101–108 (2002).

(11) J. Seong-Jeub, C. Gyn-Hyeong, A zero-voltage and zero-current switching full bridge dc-dc converter with transformer isolation, IEEE Trans. on Power Electronics, 16, 5, pp. 573–580 (2001).

(12) M.P. Chen, J.K.u Chen, K. Murata, M. Nakahara, K. Harada, Surge analysis of induction heating power supply with PLL, IEEE Trans. on Power Electronics, 16, 5, pp. 702–709 (2001).

(13) M. Milićević, V. Milićević, Analysis of the transistor converter of power together with energy dosage for the inductive heating and welding of steel tubes, European Trans. on Electrical Power, 14, 2 (2004).

(14) T.S. Todorov, P.T. Ivanov, M. Milićević, et al., Specialized high-frequency power supplies for induction heating applications, IHS-2000, Padua, Italy (2000).

(15) M. Milicević, V. Milićević, Impeder for HF inductive welding of steel tubes, IEE Proceedings, Science, Measurement and Technology, 149, 3, pp. 113–116 (2002).

(16) M. Milićević, Contribution to summary of transistor and thyristor converter for electrothermia, (invited paper) Proceedings 41st Int. Oct. Conf. on Mining and Metallurgy, (Ed. A. Kostov, M. Ljubojev), Mining Metal. Inst., Kladovo, Serbia, pp. 387–394 (2009).

(17) M. Milićević, T.S. Todorov, Some possibilities for improving the energy indicators and quality of high-frequency induction welding of tubes” (in Bulgarian), IX National Scientific Conf. Electronics ET2000, Sozopol, Bulgaria (2000).

(18) M. Milićević, V. Milićević, Optimization of energy parameters and quality of HF induction welding of steel seam tubes (in Serbian: Optimizacija energetskih parametara i kvaliteta VF induktivnog zavarivanja čeličnih šavnih cevi), Proc. XI Int. Symposium – Power Electronics Ee-2001 (Ed. V. Katić), Novi Sad, Serbia, Oct.-Nov., pp.188–191 (2001).

(19) M. Milićević, V. Milićević, A contribution to analytical parameter calculation of full-bridge power converter with energy dosing (in Serbian: Prilog analitičkom izračunavanju parametara punomostnog pretvarača snage sa doziranjem energije), Proc. XI Int. Symp. Power Electronics Ee2001, Novi Sad, Serbia, Oct.-Nov. pp.92–95 (2001).

(20) M. Milićević, Contribution to summary of transistor and thyristor converter for electrothermia (invited paper), 41th International Conference on Mining and Metallurgy, Kladovo, Serbia, pp. 387–394 (2009).

(21) J.S. Lai, Fundamentals of a new family of auxiliary resonant snubber inverter, Proc. IECON 97, 23rdInt. Conf. Indus. Elect. Control, Instrum. (Cat. No.97CH36066), IEEE, 2, pp. 645–650 (1997).

(22) B.M. Song, J.S. Lai, D. Qu, H. Yu, H.K. Sung, A novel soft-switching chopper using auxiliary resonant snubbers for a Maglev system, VPEC Sem. Proc., 16thAnnual Power Elect. Sem., Blacksburg, VA, pp. 279–284 (1998).

(23) S.J. Jeon, G.H. Cho, Zero-voltage and zero-current switching full bridge dc/dc converter for arc welding machines, Electron. Lett., 35, 13, pp. 1043–1044 (1999).

(24) L.R. Barbosa, J.B.Jr. Vieira, L.C. Freitas, V.J. Farias, An improved boost PWM soft-single-switched converter with low voltage and current stresses, Proc. IEEE Appl. Power Electron. Conf., 2, pp. 723–728 (2000).

(25) M.P. Chen, L.M. Wu, J.Y. Wu, Implementation of high frequency electronic welder with resonant switching technology, Proc. Taiwan Int. Welding Conf. ’98 on Technol. Adv. and New Industrial Appl. in Welding, Taipei, Taiwan, pp. 179–186 (1998).

(26) M.P. Chen, J.K. Chen, K. Murata, M. Nakahara, K. Harada, The surge analysis of induction heating power supply with PLL, Proceedings IEEE PEPS ’99, pp. 303–308 (1999).

(27) T. Summers, R.E. Betz, Dead-time issues in predictive current control, Conf. Rec. IEEE 37th Industry Applications Society Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, 3, pp. 2086–2093 (2002).

(28) C. Attaianese, G. Tamasso, Optimized modulation for PWM rectifiers, IEEE Power Eng. Society Winter Meeting, NY, 2, pp. 1264–1269 (2002).

(29) V.M. Nejković, M.S. Milićević, Z. Radaković, Temperature distribution in thermal processes, Welding in the World (2019).

(30) V.M. Nejković, M.S. Milićević, Z. Radaković, New method of determining of cooling time and preheating temperature in Arcwelding, Thermal Science (2019).

(31) A. Chebabhi, A.A.M. Al-Dwa, M. Defdaf, A. Kessal, New modeling and enhanced control strategy for grid-connected four-leg inverter without phase-locked loop and parks transformation, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 68, 2, pp. 121–126, Bucarest (2023).

(32) M. Touhami, A. Hazzab, L’amelioration apportee par le controleur pi non lineaire par rapport au pi gain variable, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 68, 2, pp. 158–163, Bucarest (2023).

(33) D. Benoudjit, S. Rid, N. Nait-Said, M. Saidnait-Said, L. Chrifi-Alaoui, Electric vehicle propelled by dual-induction motors structure: experimental results, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 68, 2, pp. 170–175, Bucarest (2023).

(34) D. Ragul, V. Thiyagrajan, A novel fault-tolerant asymmetrical 21-level inverter topology with reduced components, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 68, 2, pp. 200–205, Bucarest (2023).

(35) D.-S. Nicolescu, P. Rosca, A. Radulian, C. Predoi, A. Munteanu, Main electrical components of an assault rifle with adaptive mechanism, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 68, 1, pp. 36–41, Bucarest (2023).

(36) F. Roubache, S. Chaouch, Nonlinear fault tolerant control of dual three phase induction machines based electric vehicles, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 68, 1, pp. 65–70, Bucarest (2023).

(37) I. Dobrin, D. Enache, G. Dumitru, M. Gutu, S. Zamfir, R. Pintea, Curved dipolar electromagnet, numerical modeling and design, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 67, 4, pp. 409–415, Bucarest (2022).

(38) A. Chakrabarti, P.K. Sadhu, P. Pal, A novel dead-time elimination strategy for voltage source inverters in induction heating systems through fractional-order controllers, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 67, 2, pp. 181–185, Bucarest (2022).

(39) C. Tufan, I.V. Nemoianu, M. Maricaru, M. Stanculescu, M.-E.Marin, Efficient method of harmonic analysis of three-phase circuits with nonlinear controlled switching elements, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 67, 1, pp. 47–54, Bucarest (2022).

(40) A.M. Morega, M. Petre, Y. Veli, A.A. Dobre, Flow and heat transfer in an aging heat furnace for aluminum alloy plates, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 67, 1, pp. 81–86, Bucarest (2022)

Downloads

Published

23.12.2023

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

CONTRIBUTION TO THE DESIGN OF INVERTER CONVERTERS FOR HEATING AND WELDING AT HIGHER FREQUENCIES. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(4), 345-350. https://doi.org/10.59277/RRST-EE.2023.4.4