PERFORMANCE OF ZINC OXIDE-VANADIUM PENTOXIDE VARISTORS IN MEDIUM VOLTAGE SURGE ARRESTERS
DOI:
https://doi.org/10.59277/RRST-EE.2024.2.11Keywords:
Advanced functional materials, Metal oxides, ZnO-V2O5 varistors, Medium voltage surge arrestersAbstract
Metal oxide varistor (MOV) discs (Ø28 mm × 12 mm) made of 97.5 mol.% zinc oxide (ZnO), and 0.5 mol.% each of vanadium pentoxide (V2O5), tin (IV) oxide (SnO2), antimony(III) oxide (Sb2O3), cobalt(II, III) oxide (Co3O4), and chromium(III) oxide (Cr2O3) additives were produced using powder metallurgy. The obtained MOVs were polycrystalline with high density. This study focused on analyzing the microstructure and mechanical and electrical properties of the MOVs. The developed MOVs had a fine-grained microstructure with an average ZnO grain size of about 10 μm. The Ag-coated MOV discs tested in a range of 100 – 1300 V ac exhibited a leakage current of 0.033 – 1.420 mA and a minimum varistor voltage of 2.37 ± 0.15 kV. After conducting functional tests on Ag-coated MOVs installed in polymer-housed surge arresters, it was found that they are suitable for use in medium voltage arresters with a nominal voltage (Un) of 25 kV, a continuous operating voltage (Uc) of 12 kV and a leakage current (IL) of 1 mA.
References
(1) S.C. Pillai, J.M. Kelly, R. Ramesh, D.E. McCormack, Advances in the synthesis of ZnO nanomaterials for varistor devices, J. Mater. Chem. C, 1, 20, pp. 3268–3281 (2013).
(2) M.V. Lungu, Effects of dopants and processing parameters on the properties of ZnO-V2O5-based varistors prepared by powder metallurgy: A review, Materials, 16, 10, 3725 (2023).
(3) M. Matsuoka, Nonohmic properties of zinc oxide ceramics, Jpn. J. Appl. Phys., 10, 6, pp. 736–746 (1971).
(4) S.A. Pianaro, P.R. Bueno, E. Longo, J.A. Varela, A new SnO2-based varistor system, J. Mater. Sci. Lett., 14, 10, pp. 692–694 (1995).
(5) M.V. Lungu, D. Pătroi, V. Marinescu, A. Caramitu, M. Marin, D. Tălpeanu, M. Lucaci, P. Godeanu, Preparation and study of the optical, electrical and dielectric characteristics of some disc-shaped tin dioxide-based varistors, Rom. J. Phys., 67, 7–8, 610 (2022).
(6) J. He, Metal Oxide Varistors: From Microstructure to Macro-Characteristics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 100–125 (2019).
(7) T.K. Gupta, Application of zinc oxide varistors, J. Am. Ceram. Soc., 73, 7, pp. 1817–1840 (1990).
(8) K. Eda, Zinc oxide varistors, IEEE Electr. Insul. Mag., 5, 6, pp. 28–30 (1989).
(9) N. Kularatna, A.S. Ross, J. Fernando, S. James, Components used in surge protection circuits, In N. Kularatna, A.S. Ross, J. Fernando, S. James (Edit.), Design of Transient Protection Systems, Elsevier, Amsterdam, The Netherlands, pp. 29–42 (2019).
(10) L. Hasse, A. Konczakowska, J. Smulko, Classification of high-voltage varistors into groups of differentiated quality, Microelectron. Reliab., 49, 12, pp. 1483–1490 (2009).
(11) K.S. Ganesh, A review of zinc oxide varistors for surge arrester, Proceedings of the 2018 4th International Conference on Electrical Energy Systems (ICEES), Chennai, India, pp. 470–474 (2018).
(12) H. Hng, K.M. Knowles, Microstructure and current–voltage characteristics of multicomponent vanadium‐doped zinc oxide varistors, J. Amer. Ceram. Soc., 83, 10, pp. 2455–2462 (2000).
(13) F. Kharchouche, A. Zebar, Microstructure and electrical properties of CaCO3-doped ZnO–(Bi2O3, Sb2O3) based varistor ceramics, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 67, 4, pp. 439–444 (2022).
(14) L.M. Levinson, H.R. Philipp, E. Sonder, Interface Effects in Zinc Oxide Varistors, In J.A. Pask, A.G. Evans (Edit.), Ceramic Microstructures ’86, Materials Science Research, Springer, Boston, MA, 21, pp. 665–678 (1987).
(15) O. Diwald, Zinc oxide nanoparticles for varistors, In O. Diwald, T. Berger (Edit.), Metal Oxide Nanoparticles, Wiley, Hoboken, NJ, USA, pp. 783–807 (2021).
(16) A.N.M. Karim, S. Begum, M.S.J. Hashmi, Role of surface to volume ratio of zinc oxide arrester blocks on the energy absorption capability, IOP Conf. Ser.: Earth Environ. Sci., 16, 012008 (2013).
(17) C. Rojo Ceballos, F. Chejne, E. Pérez, A. Osorio, A. Correa, Study of the behavior of low voltage ZnO varistors against very fast transient overvoltages (VFTO), Electric Power Syst. Res. 214, 108937 (2023).
(18) F. Munteanu, F.-M. Frigura-Iliasa, E. Cazacu, About establishing the functional limits of a ZnO varistor based surge-arrester, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 52, 4, pp. 443–452 (2007).
(19) B. Lončar, M. Vujisić, K. Stanković, P. Osmokrović, Stability of metal-oxide varistor characteristics in exploitation conditions, Acta Phys. Pol. A, 116, 6, pp. 1081–1084 (2009).
(20) M.V. Lungu, C.D. Cîrstea, M. Marin, D. Tălpeanu, A. Caramitu, D. Pătroi, V. Marinescu, G.B. Sbarcea, C.A. Manea, P. Godeanu, A. Barbu, Process for obtaining some disc-shaped zinc oxide varistors, RO Patent Application filed with the State Office for Inventions and Trademarks (OSIM), No. A/00741 (2021).
(21) ***ISO 14577-1, Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 1: Test method (2015).
(22) W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 6, pp. 1564–1583 (1992).
(23) ***IEC 60099-4, Surge arresters - Part 4: Metal-oxide surge arresters without gaps for a.c. systems (2014).
(24) ***PE 116/94, Normative for tests and measurements performed on electrical installations and equipment (1994).
(25) M.V. Lungu, A. Caramitu, D. Pătroi, V. Marinescu, G. Sbarcea, M. Lucaci, M. Marin, D. Tălpeanu, P. Godeanu, Study of disc-shaped ZnO based varistors doped with V2O5, Sb2O3, Co3O4, SnO2, and Cr2O3, Book of Abstracts of the 10th International Conference of Applied Science (ICAS 2022), Banja Luka, Republic of Srpska, Bosnia & Herzegovina, 25-28 May 2022, pp. 65 (2022).
(26) S. Anas, R.V. Mangalaraja, M. Poothayal, S.K. Shukla, S. Ananthakumar: Direct synthesis of varistor-grade doped nanocrystalline ZnO and its densification through a step-sintering technique, Acta Materialia, 55, 17, pp. 5792–5801 (2007).
(27) T. Shyrokykh, X. Wei, S. Seetharaman, O. Volkova, Vaporization of vanadium pentoxide from CaO-SiO2-VOx slags during alumina dissolution, Metall. Mater. Trans. B, 52, 3, pp. 1472–1483 (2021).
(28) T. Karlsson, C. Forsgren, B.-M. Steenari, Recovery of antimony: A laboratory study on the thermal decomposition and carbothermal reduction of Sb(III), Bi(III), Zn(II) oxides, and antimony compounds from metal oxide varistors, J. Sustain. Metall., 4, 2, pp. 194–204 (2018).
(29) M. Peiteado, M.A. de la Rubia, J.F. Fernández, A.C. Caballero, Thermal evolution of ZnO-Bi2O3-Sb2O3 system in the region of interest for varistors, J. Mater Sci., 41, 8, pp. 2319–2325 (2006).
(30) Y.-W. Lao, S.-T. Kuo, W.-H. Tuan, Effect of Bi2O3 and Sb2O3 on the grain size distribution of ZnO, J. Electroceram., 19, 2–3, pp. 187–194 (2007).
(31) J. Porcayo-Calderon, J.J. Ramos-Hernandez, C.D. Arrieta-Gonzalez, et al., Synthesis by hydrothermal treatment of ZnO-based varistors doped with rare earth oxides and their characterization by impedance spectroscopy, Crystals, 10, 12, 1134 (2020).
(32) Z. Ming, S. Yu, T.C. Sheng, Grain growth of ZnO–V2O5 based varistor ceramics with different antimony dopants, J. Eur. Ceram. Soc., 31, 13, pp. 2331–2337 (2011).
(33) M.L. Arefin, F. Raether, D. Dolejš, A. Klimera, Phase formation during liquid phase sintering of ZnO ceramics, Ceram. Int., 35, 8, pp. 3313–3320 (2009).
(34) R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst A, 32, 5, pp. 751–767 (1976).
(35) H.N. Yoshimura, A.L. Molisani, N.E. Narita, J.L.A. Manholetti, J.M. Cavenaghi, Mechanical properties and microstructure of zinc oxide varistor ceramics, Mater. Sci. Forum, 530–531, pp. 408–413 (2006).
(36) A. Sedghi, N.R. Noori, Comparison of electrical properties of zinc oxide varistors manufactured from micro and nano ZnO powder, J. Ceram. Process. Res., 12, 6, pp. 752–755 (2011).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.