ALTERNATIVE HYBRID CONTROL OF SWITCHED SYSTEMS. AN APPLICATION TO MACHINE DC FED BY MULTICELLULAR CONVERTER

Authors

  • IBRAHIM BENTCHIKOU Intelligent Systems Laboratory (LESI) of the University of Khemis Miliana, Ain Defla
  • KHALED HALBAOUI Centre de Recherche Nucleaire de Birine Ain oussera,Laboratoire d'Electronique de Puissance & Commande
  • FARES BOUDJEMA Laboratory of Process Control, National Polytechnic School, ENP
  • DJAMEL BOUKHETALA Laboratory of Process Control, National Polytechnic School, ENP
  • TLEMÇANI ABDELHALIM Research Laboratory in Electrical Engineering and Automatic (LREA). Medea

Keywords:

Hybrid control, Floating condensers, Multicellular converter

Abstract

In this article, we present an alternative of hybrid control, where we choose as an actuator, the DC motor controlled by a multi-cellular converter. For this, a switching control for the multi-cellular converter is established, to provide the proper reference value for the regulation of the speed by using the Petri nets. We consider a converter with three cells which is represented as a hybrid system with eight modes of operation. The operation modes of the system are governed by the adjustable reference voltage and a reference speed, which are calculated by means of an energy balance principle. Simulation results are given in order to illustrate the performance of such a method. To show the validity of our approach, a practical implementation based on  Spartan 3E FPGA resulted.

References

(1) M.S Branicky, S.K. Mitter, Algorithms for optimal hybrid control, 34th IEEE Conference on Decision and Control (CDC95), New Orleans, pp. 2661-2666 (1995).

(2) T. Meynard, H. Foch, Dispositif de conversion d’energie electrique a semiconducteur” brevet francais no. 91,09582, Europe, Japan, USA, Canada, 92,00652.

(3) I. Bentchikou, F. Boudjema, D. Boukhetala, N.O. Cherchali, A. Tlemcani, Investigation in the technique of adaptive predictive control fed by a hybrid inverter applied to a permanent magnet synchronous machine, Nonlinear Dynamics and Systems Theory, 16 (2016).

(4) A. Hagar, Generalized multi-cell voltage sourced converter, Power Electronics and Applications, 2009. EPE ’09. 13th European Conference on, pp. 1–6 (2009).

(5) K. Benmansour, A. Benalia, M. Djemai, J. Leon, Hybrid control of a multicellular converter, Elsevier, Nonlinear Analysis: Hybrid systems, 1, 1, pp. 16–29 (2007).

(6) T.A. Meynard, H. Foch, P. Thomas, J. Courault, R. Jakob, M. Nahrstaedt, Multicell converters: basic concepts and industry applications, IEEE Transactions on Industrial Electronics, 49, pp. 955–964 (2002).

(7) M.R. Skender, A. Tlemcani, Implementation of a new super twisting ODE algorithm controlled by Dspace: application to series multicell converter, Studies in Informatics and Control, 25, 2, (2016).

(8) S. Hanafi, M.K. Fellah, M.Yaichi, M.F.Benkhoris, Nonlinear feedback decoupling control applied to stacked multicellular converter”, Revue Roumaine des Sciences Techniques- Serie Électrotechnique et Énergétique, 59, 1, pp. 97-106 (2014)

(9) B.C. Florea, D.A. Stoichescu, A. Spataru, A direct control method for multicellular converters, U.P.B. Sci. Bull., Series C, 74, 3, pp. (2012).

(10) D. Patino, P. Riedinger, C. Iung, Predictive control approach for multicellular converters, Industrial Electronics, IECON 2008. 34th Annual Conference of IEEE, pp. 3309-3314.

(11) J. S. Lai and F. Z. Peng, Multilevel converters-a new breed of power converters, IEEE Transactions on Industrial Applications, 32, 3, pp. 2348 – 2356 (1996).

(12) O. Benzineb, F. Taibi, T. M. Laleg-Kirati, M. S. Boucherit, M.Tadjine, Control and fault diagnosis based sliding mode observer of a multicellular converter: hybrid approach, J. of Electrical Engineering, 64, 1, pp. 20-30 (2013).

(13) P. Lezana, R. Aguilera, J. Rodriguez, Fault detection on multicell converter based on output voltage frequency, Analysis, Industrial Electronics, IEEE Transactions on, 56, 6, pp. 2275–2283 (2009).

(14) V. DargahiA, M. Barzadeh, A. Darvishi, M. Salehifar, A.Shoulaie, Voltage compensation by a modified mixed cascade flying capacitor multicell inverter, Power Quality Conference (PQC), p. 5 (2010).

(15) J. Lygeros, K.H Johansson, S.N. Simie, S.S. Sastry, Dynamical properties modeling of hybrid automata, IEEE Transactions on automatic control, 48, January 2003.

(16) M.R. Skender, A. Tlemcani, Nouvel algorithme d’observation à mode glissant d’ordre supérieur appliqué au convertisseur multicellulaire série, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 61, 2, pp. 126–130 (2016).

(17) R. Stella, S. Pirog, M. Baszynski, A. Mondzik, A. Penczek, J. Czekonski, S. Gasiorek, Results of investigation of multicell converters with balancing circuit, Part I, Industrial Electronics, IEEE Transactions on, 56, 7, pp. 2610-2619 (2009).

Downloads

Published

30.09.2022

Issue

Section

Électrotechnique et électroénergétique / Electrical and Power Engineering