NONLINEAR ADAPTIVE BACKSTEPPING CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

Authors

  • NIHAD ALI Author
  • WAQAR ALAM Author
  • MAHMOOD PERVAIZ Author
  • JAMSHED IQBAL Author

Keywords:

Permanent magnet synchronous motor, Disturbance, Adaptive backstepping, Robustness

Abstract

This paper addresses the speed tracking problem of a permanent magnet synchronous motor (PMSM) under the influence of parametric uncertainties and external load torque disturbances. The nonlinear dynamics associated with both PMSM and load are considered time-variant and uncertain. Two robust controllers, namely, backstepping and adaptive backstepping are designed to drive the speed of a PMSM to a predefined trajectory. The backstepping controller is used to stabilize and control the speed of the motor while the uncertain parameters and disturbances are estimated by adaptive laws. These adaptation laws and the use of performance improvement terms in the backstepping control reduce the gain requirements. The stability analysis of both the controllers via the Lyapunov method ensures the asymptotic convergence of the overall close loop system. Theoretical analysis is presented to summarize the characteristics of both controllers. Numerical simulations are provided to verify the effectiveness of the proposed controller.

References

(1) J. Iqbal, R. U. Islam, S. Z. Abbas, A. A. Khan, S. A. Ajwad, Automating industrial tasks through mechatronic systems – A review of robotics in industrial perspective, Tehnički Vjesnik, 23, 3, pp. 917–924 (2005).

(2) R. Shanthi, S. Kalyani, P. M. Devie, Design and performance analysis of adaptive neuro-fuzzy controller for speed control of permanent magnet synchronous motor drive, Soft Computing, pp. 1–15 (2020).

(3) A. Larbaoui, B. Belabbes, A. Meroufel, D. Bouguenna, Commande par mode glissant floue de la machine synchrone (fuzzy sliding mode control for synchronous machine), Rev. Roum. Sci. Techn.-Electrotech. Et Energ., 62, 2, pp. 192–196 (2017).

(4) J. Iqbal, M. Ullah, S. G. Khan, B. Khelifa, S. Ćuković, Nonlinear control systems ̶ A brief overview of historical and recent advances, Nonlinear Engineering – Modeling and Application, (2009).

(5) H. C. Cho, K. S. Lee, M. S. Fadali, Adaptive control of PMSM systems with chaotic nature using Lyapunov stability-based feedback linearization, Int. J. of Innova. Comp., Info. and Cont., 5, 2, pp. 479–488 (2009).

(6) D. Q. Wei, B. Zhang, X. S. Luo, S. Y. Zeng, D. Y. Qiu, Effects of couplings on the collective dynamics of permanent magnet synchronous motors, IEEE Trans. Cir. and Syst. II: Express Briefs, 60, 10, pp. 692–696 (2013).

(7) Y. Deia, M. Kidouche, M. Becherif, Decentralized robust sliding mode control for a class of interconnected nonlinear systems with strong interconnections, Rev. Roum. Sci. Techn.-Electrotech. Et Energ., 62, 2, pp. 203–208 (2017).

(8) T.-B.-T.Nguyen, T.-L.Liao, J.-J.Yan, Adaptive sliding mode control of chaos in permanent magnet synchronous motor via fuzzy neural networks, Math. Probl. in Eng., (2014).

(9) Y. B. Jeddou, R. Abdessemed, E. Merabet, L. Bentouhami, Fuzzy controller for self-excited dual star induction generator with an online estimation of magnetizing inductance used in wind energy conversion, Rev. Roum. Sci. Techn.-Electrotech. Et Energ., 63, 4, pp. 417–422 (2018).

(10) G. Rigatos, P. Siano, A. Melkikh, N. Zervos, Nonlinear H-infinity Control Approach to Stabilization of Distributed Synchronous Generators, IEEE Systems Journal, 99, pp. 1–10 (2017).

(11) M. Demirtas, Off-line tuning of a PI speed controller for a permanent magnet brushless DC motor using DSP, Energy Conversion and Management, 52, 1, pp. 264–273 (2011).

(12) R.W. Jan, C.S. Tseng, R.J. Liu, Robust PID control design for permanent magnet synchronous motor: a genetic approach, Electric Power Systems Research, 78, 8, pp. 1161–1168 (2008).

(13) N. Ali, A. U. Rehman, W. Alam, H. Maqsood, Disturbance observer-based robust sliding mode control of permanent magnet synchronous motor, Journal of Electrical Engineering, 14, 6, pp. 2531–2538 (2019).

(14) J. Iqbal, M.I. Ullah, A.A. Khan, M. Irfan, Towards sophisticated control of robotic manipulators: Experimental study on a pseudo-industrial arm, Strojniški Vestnik-Journal of Mechanical Engineering, 61, 7–8, pp. 465–470 (2015).

(15) N. Ali, I. Tawiah, W. Zhang, Finite-time extended state observer-based nonsingular fast terminal sliding mode control of autonomous underwater vehicles, Ocean Engineering, 218 (2020).

(16) J.-H. Hao, X.-W. Wang, and H. Zhang, Chaotic robust control of permanent magnet synchronous motor system under uncertain factors, Acta. Physica. Sinica., 63, 22, pp. 2202032-2202038 (2014).

(17) M. Krstic, I. Kanellakopoulos, P.V. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, New York, 1995.

(18) O. Khan, M. Pervaiz, E. Ahmad, J. Iqbal, On the derivation of novel model and sophisticated control of flexible joint manipulator, Rev. Roum. Sci. Techn.-Electrotech. Et Energ., 61, 1, pp. 103–108 (2017).

(19) C. M. Kwan, F. L. Lewis, Robust backstepping control of induction motors using neural networks, IEEE Tran. Neural Network., 11, 5, pp. 1178-1187 (2000).

(20) J.-H. Hu J.-B. Zou, Adaptive backstepping control of permanent magnet synchronous motors with parameter uncertainties, Control and Decision, 21, 11, pp. 1264-1269 (2006).

(21) J. Zhou, Y. Wang, Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor, Control Engineering Practice, 13, 10, pp. 1259–1269 (2005).

(22) B. Bossoufi, M. Karim, A. Lagrioui, M. Taoussi, FPGA-Based Implementation Nonlinear Backstepping Control of a PMSM Drive, International Journal of Power Electronics and Drive System, 4, 1, pp. 12–23 (2014).

(23) R. Bhatia, Positive definite matrices, Princeton University Press, 2009.

Downloads

Published

27.12.2021

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

NONLINEAR ADAPTIVE BACKSTEPPING CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR. (2021). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 66(1), 15-20. https://journal.iem.pub.ro/rrst-ee/article/view/7