A DIRECT ADAPTIVE SLIDING MODE HIGH VOLTAGE GAIN PEAK POWER TRACKER FOR THERMOELECTRIC APPLICATIONS

Authors

  • ABDELHAKIM BELKAID Electrical Engineering Department, University of Bejaia, Algeria Author
  • ILHAMI COLAK Engineering and Architecture Faculty of Nisantasi University, Istanbul, Turkey Author
  • KORHAN KAYISLI Engineering and Architecture Faculty of Nisantasi University, Istanbul, Turkey Author

Keywords:

Thermoelectric applications, Maximum power point tracking (MPPT), Direct adaptive sliding mode, Single-ended primary-inductor converter (SEPIC), High voltage gain converter

Abstract

Today, thermoelectric generators (TEG) are of great interest since their prices are falling and more areas of applications have appeared. In order to increase the TEG’s low voltage and to enhance performance of the thermoelectric power conversion system, this paper presents a direct adaptive sliding mode MPPT based on incremental conductance (INC) principle applied to a modified high voltage gain SEPIC converter. Mathematical modeling and computer simulations for the considered system are carried out. A comparison is made between the proposed method, the basic sliding mode (SM) and the Perturb and Observe (P&O) algorithm. The proposed tracker has been implemented to ensure that the TEG works at its maximum power regardless of the load it feeds and the temperature gradient between its two sides. The results of this study showed that the TEG’s voltage can be boosted from two to twenty times, an energy transfer efficiency over than 99% and an aptitude to track the maximum power point (MPP) at diverse working conditions perfectly with high performance including low convergence time and less oscillations.

References

(1) A. M. Morega, M. Morega, M. A. Panait, Structural optimization of a thermoelectric generator by numerical simulation, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 55, 1, pp. 3–12 (2010).

(2) D. Champier, Thermoelectric Generators: A Review of Applications, Energy Conversion and Management, 140, pp. 167–181 (2017).

(3) P. S. Sikder, N. Pal, K. S. Patro, A modeling of stand-alone solar photo- voltaic system for rural electrification purposes, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 64, 3, pp. 241–246 (2019).

(4) A. Belkaid, I. Colak, O. Isik, Photovoltaic maximum power point tracking under fast varying of solar radiation, Applied Energy, 179, pp. 523–530 (2016).

(5) H. A. Azzeddine, M. Tioursi, D. Chaouch, B. Khiari. An offline trained artificial neural network to predict a photovoltaic panel maximum power point, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 61, 3, pp. 255–257 (2016).

(6) S. P. Bihari, P. K. Sadhu, S. Das, P. Arvind, A. Gupta. Design and implementation of a photovoltaic wind hybrid system with the assessment of fuzzy logic maximum power point technique, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 64, 3, pp. 235–240 (2019).

(7) A. Belkaid, J-P. Gaubert, A. Gherbi,. An Improved Sliding Mode Control for Maximum Power Point Tracking in Photovoltaic Systems, Journal of Control Engineering and Applied Informatics, 18, 1, pp. 86–94 (2016).

(8) A. Belkaid, J-P. Gaubert, A. Gherbi. Design and Implementation of a High Performance Technique for Tracking Photovoltaic Peak Power. IET Renewable Power Generation, 11, 1, 92–99 (2017).

(9) M. A. Elgendy, B. Zahawi, D.J. Atkinson. Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications, IEEE Transactions on Sustainable Energy, 3,1, pp. 21–33 (2012).

(10) M. Farhat, O. Barambones, L. Sbita, A new maximum power point method based on a sliding mode approach for solar energy harvesting. Appl Energy, 185 (P2), pp. 1185–1198 (2017).

(11) E. Bianconi, J. Calvente, R. Giral, et al. Perturb and observe MPPT algorithm with a current controller based on the sliding mode, Int. J. Electr. Power Energy Syst., 44, 1, pp. 346–356 (2013).

(12) J. B. Dumitru, A. M. Morega, M. Morega. A numerical study of the heat transfer management provided by a thermoelectric sink-and- fan system, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 58, 2, pp. 205–214 (2013).

(13) E. Ozsoy; S. Padmanaban; A.W. Oluwafemi; K.Vigna; T. Sutikno, Modified (2/1-k) output gain Ćuk DC-to-DC converter circuit for renewable power applications, IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering, Doha, Qatar, 10-12 April 2018.

(14) E. Ozsoy, S. Padmanaban, V. Fedak, C. Muranda, M. Cernet, Modified SEPIC DC-to-DC Converter 2/(1-k) Output Gain Configuration for Renewable Power Energy and High Voltage Applications, IEEE 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, Hungary, 26-30 August 2018.

(15) E. Babaei, T. Jalilzadeh, M. Sabahi, M. Maalandish, R. S. Alishah, High step-up DC-DC converter with reduced voltage stress on devices, Int Trans Electr Energ Syst. (2018).

(16) H. Mamur, R. Ahiska, Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators, Energy Convers Manage, 97, pp. 265–72(2015).

Downloads

Published

02.07.2021

Issue

Section

Thermotechnique et thermoénergétique | Thermotechnics and Thermal Energy

How to Cite

A DIRECT ADAPTIVE SLIDING MODE HIGH VOLTAGE GAIN PEAK POWER TRACKER FOR THERMOELECTRIC APPLICATIONS. (2021). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 66(2), 131-136. https://journal.iem.pub.ro/rrst-ee/article/view/60