EXPERIMENTAL IMPLEMENTATION OF THE MAXIMUM POWER POINT TRACKING ALGORITHM FOR A CONNECTED WIND TURBINE EMULATOR

Authors

  • ZOUHEYR DEKALI LAT, Laboratoire d'Automatique de Tlemcen, Université de Tlemcen, 13000, Tlemcen, Algeria Author
  • LOTFI BAGHLI LAT, Laboratoire d'Automatique de Tlemcen, Université de Tlemcen, 13000, Tlemcen, Algeria Author
  • ABDELMADJID BOUMEDIENE LAT, Laboratoire d'Automatique de Tlemcen, Université de Tlemcen, 13000, Tlemcen, Algeria Author

Keywords:

Wind turbine emulator (WTE), Wind energy conversion system (WECS), Dc motor (DCM), Double fed induction generator (DFIG), Maximum power point pracking (MPPT), DS1104

Abstract

This paper presents the design, modeling and the experimental build of a 1.5 kW relatively low-cost wind turbine emulator (WTE) equipped by a DC motor (DCM) in order to simulate the static-dynamic behavior of a real wind turbine, including the gearbox. This emulator is integrated into a connected wind energy conversion system chain (WECS), based on the double fed induction generator (DFIG) configuration. The latter ensures the electromechanical conversion. It allows the transfer of active and reactive power with the power grid during hypo and hyper synchronous modes. The aerodynamic emulation principle requires controlling the DC armature current with a PI regulator. This leads to an electrical drive that applies a shaft torque identical to the wind turbine. The current reference is calculated as function of the static settings of the wind turbine and real wind speed data give different operating points. In addition, this paper also proposes to test the Tip Speed Ratio (TSR) based MPPT algorithm to extract the maximum available power on the emulator. The MPPT, the dc motor control and the DFIG power control algorithms are implemented in C, using dSPACE DS1104 control board. The experimental results confirm the effectiveness of the controlled dc motor to emulate the wind turbine with great performances of the proposed MPPT structure.

References

(1) R. Ii. Ovando, J. Aguayo, M. Cotorogea, Emulation of a low power wind turbine with a dc motor in matlab/simulink, in 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 2007.

(2) A. Maafa, D. Aouzellag, K. Ghedamsi, R. Abdessemed, Cascaded doubly fed induction generator with variable pitch control system, Rev Roum. Sci. Tech.-Ser. Electrotech. Energ., 61, 4, pp. 361–366 (2016).

(3) Golbal Wind Report : ANNUAL MARKET UPDATE 2017. Global Wind Energy Council GWEC, 2017, [Online]. Available: https://fr.slideshare.net/wyakab/gwec-global-wind-report-april-2018.

(4) L. Barote, C. Marinescu, I. Şerban, Energy storage for a stand-alone wind energy conversion system, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 55, 3, pp. 235–242 (2010).

(5) Z. Dekali, L. Baghli, A. Boumediene, Experimental Implantation of an Emulator of a Wind Energy Conversion Chain System Based on Double Fed Induction Generator, 11th Scientific Tech. Days Innov. Partnersh. Glob. CONTEXT ENERGY Transit., Oran, Algeria., Apr. 2018.

(6) Z. Dekali, L. Baghli, A. Boumediene, Control of a grid connected dfig based wind turbine emulator, in 2018 5th Edition of the International Symposium, Environment-Friendly Energy and Applications (EFEA), Rome, Italy, 2018.

(7) M. Merah and L. Baghli, Simulation and comparison between conventional and interleaved buck-boost converter for grid- connected pv system,” SSRN Electron. J., 2018.

(8) N. R. Averous et al., Development of a 4 MW full-size wind-turbine test bench, IEEE J. Emerg. Sel. Top. Power Electron., 5, 2, pp. 600– 609 (2017).

(9) F. Amrane, A. Chaiba, B. E. Babes, S. Mekhilef, Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 61, 4, pp. 319–324 (2016).

(10) S. Kouadria, S. Belfedhal, Y. Meslem, E. M. Berkouk, Development of real time Wind Turbine Emulator based on dc motor controlled by hysteresis regulator, in 2013 International Renewable and Sustainable Energy Conference (IRSEC), Ouarzazate, Mar. 2013.

(11) L. A. Lopes, J. Lhuilier, M. F. Khokar, A. Mukherjee, A wind turbine emulator that represents the dynamics of the wind turbine rotor and drive train, in IEEE 36th Conference on Power Electronics Specialists, 2005., Aachen, Germany, 2005.

(12) Yen Kheng Tan, S. K. Panda, Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes, IEEE Trans. Power Electron., 26, 1, pp. 38–50 (2011).

(13) X. Dehong, B. Frede, C. Wenjie, Z. Nan, Introduction: Advanced Control of Doubly Fed Induction Generator for Wind Power Systems, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018, pp. 1–20.

(14) X. Dehong, B. Frede, C. Wenjie, Z. Nan, Basics of Wind Power Generation System: Advanced Control of Doubly Fed Induction Generator for Wind Power Systems, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018, pp. 21–42.

(15) L. Baghli, GADA + émulateur de vent. embesystems, 2018, [Online]. Available: https://www.youtube.com/watch?v=gXJHaHWJdk0&t=17s.

(16) R. Nair, N. Gopalaratnam, Emulation of wind turbine system using vector-controlled induction motor drive, IEEE Trans. Ind. Appl., pp. 1–1 (2020).

(17) K. Schechner, C. M. Hackl, Scaling of the drive train dynamics of large-scale wind turbine systems for real-time emulation in small-scale laboratory setups, IEEE Trans. Ind. Electron., 66, 9, pp. 6779–6788 (2019).

(18) X. Dehong, B. Frede, C. Wenjie, Z. Nan, DFIG Test Bench: Advanced Control of Doubly Fed Induction Generator for Wind Power Systems, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018, pp. 21–42.

(19) M. Karabacak, L. M. Fernandez-Ramirez, T. Kamal, S. Kamal, A new hill climbing maximum power tracking control for wind turbines with inertial effect compensation, IEEE Trans. Ind. Electron., pp.1–1 (2019).

(20) D. Llano, R. McMahon, M. Tatlow, Control algorithms for permanent magnet generators evaluated on a wind turbine emulator test-rig, in 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 2014.

(21) A. Tohidi, H. Hajieghrary, M. A. Hsieh, Adaptive disturbance rejection control scheme for dfig-based wind turbine: theory and experiments, IEEE Trans. Ind. Appl., 52, 3, pp. 2006–2015 (2016).

(22) M. Adjoudj, M. Abid, A. Aissaoui, Sliding mode control of a doubly fed induction generator for wind turbines, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 56, 1, pp. 15–24 (2011).

(23) A. Asri, Y. Mihoub, S. Hassaine, P.O. Logerais, A. Amiar, T. Allaoui, An adaptive proportional integral method for maximum power point tracking control of permanent magnet synchronous generator wind energy conversion system, Rev. Roum. Sci. Techn.– Electrotechn. et Énerg., 63, 3, pp. 320–325 (2018).

(24) G. Abad, Ed., Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation. Hoboken, NJ: IEEE Press, 2011.

(25) K. Boulaam, K. Boukhelifa, Output power control of a variable wind energy conversion system, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 62, 2, pp. 197–202 (2017).

(26) J. Castelló, J. M. Espí, R. García-Gil, Development details and performance assessment of a Wind Turbine Emulator, Renew. Energy, 86, pp. 848–857 (2016).

(27) L. K. Gan, J. K. H. Shek, M. A. Mueller, Modeling and characterization of downwind tower shadow effects using a wind turbine emulator, IEEE Trans. Ind. Electron., 64, 9, pp. 7087–7097 (2017).

(28) M. Yin, W. Li, C.Y. Chung, L. Zhou, Z. Chen, Y. Zou, Optimal torque control based on effective tracking range for maximum power point tracking of wind turbines under varying wind conditions, IET Renew. Power Gener., 11, 4, pp. 501–510 (2017).

(29) R. Cardenas, R. Pena, Sensorless Vector Control of induction machines for variable-speed wind energy applications, IEEE Trans. Energy Convers., 19, 1, pp. 196–205 (2004).

(30) X. Dehong, B. Frede, C. Wenjie, Z. Nan, Modeling of DFIG Wind Power Systems: Advanced Control of Doubly Fed Induction Generator for Wind Power Systems, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 65–97.

(31) O. Barambones, J.A. CortajarenaIsidro, C. Jose, M.G de Durana, P. Alkorta, A.K. Mollaee, Variable speed wind turbine control scheme using a robust wind torque estimation, Renew. Energy, 133, pp. 354–366 (2019).

(32) J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, F. Briz, Control and Emulation of small wind turbines using torque estimators, IEEE Trans. Ind. Appl., 53, 5, pp. 4863–4876 (2017).

(33) R. Azizipanah-Abarghooee, M. Malekpour, T. Dragicevic, F. Blaabjerg, V. Terzija, A linear inertial response emulation for variable speed wind turbines, IEEE Trans. Power Syst., 35, 2, pp. 1198–1208 (2020).

(34) L. Benaaouinate, M. Khafallah, A. Mesbahi, A. Martinez, Development of a useful wind turbine emulator based on permanent magnet DC motor, in 2017 14th International Multi- Conference on Systems, Signals & Devices (SSD), Marrakech, Mar. 2017.

(35) F. Martinez, L. C. Herrero, S. de Pablo, Open loop wind turbine emulator, Renew. Energy, 63, pp. 212–221 (2014).

(36) F. Arevalo, P. Estrada, N. Pozo, M. Pozo, Wind generation emulator using a DC machine, in 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Oct. 2017.

(37) Y. Zou, M. E. Elbuluk, Y. Sozer, Stability analysis of maximum power point tracking (mppt) method in wind power systems, IEEE Trans. Ind. Appl., 49, 3, pp. 1129–1136 (2013).

(38) A. Mesbahi, M. Khafallah, A. Saad, A. Nouaiti, Emulator design for a small wind turbine driving a self excited induction generator, in 2017 International Conference on Electrical and Information Technologies (ICEIT), Rabat, Nov. 2017.

(39) D. Kumar, K. Chatterjee, A review of conventional and advanced MPPT algorithms for wind energy systems, Renew. Sustain. Energy Rev., 55, pp. 957–970 (2016).

Downloads

Published

02.07.2021

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

EXPERIMENTAL IMPLEMENTATION OF THE MAXIMUM POWER POINT TRACKING ALGORITHM FOR A CONNECTED WIND TURBINE EMULATOR. (2021). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 66(2), 111-117. https://journal.iem.pub.ro/rrst-ee/article/view/57