HYBRID METHOD FOR DETERMINATION OF POWER SYSTEMS DYNAMIC EQUIVALENTS BASED ON MEASUREMENTS
Keywords:
Dynamic equivalents, Model order reduction, Measurement-based approach, Transient stability, Cuckoo search (CS) algorithm, Chaotic salp swarm algorithm (CSSA)Abstract
Dynamic equivalence is an important process of electrical power systems. It allows performing transient stability assessment of a specific area at a minimum cost. In this paper, the fourth-order model of synchronous generators with a simple exciter is used as an equivalent to the group of generators in the external area. Based on the post fault measurements, parameters of the equivalent are estimated by an optimal procedure. In this procedure, a Low-Level Teamwork Hybrid (LTH) algorithm based on Cuckoo search (CS) and the Chaotic Salp Swarm Algorithm (CSSA) is employed. The developed program is tested on two standard power systems used by most authors who have dealt with this problem. Simulation results confirm the ability of the reduced model to preserve the main dynamics of the original system with accuracy. A comparative study of the LTH approach against recently proposed metaheuristics proved the superiority of the proposed algorithm.
References
(1) P. Ju, L. Q. Ni, F. Wu, Dynamic equivalents of power systems with online measurements. Part 1: Theory, IEE Proc.-Gener. Transm. Distrib., 151, 2, pp. 175–178 (2004).
(2) P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. Van Cutsm, V. Vittal, Definition and Classification of Power System Stability, IEEE Trans. on Power Syst., 19, 3, pp. 1387– 1401 (2004).
(3) D. Osipov, K. Sun, Adaptive nonlinear model reduction for fast power system simulation, IEEE Trans. on Power Syst., 33, 6, pp. 6746– 6754 (2018).
(4) R. Podmore, Identification of coherent generators for dynamic equivalents, IEEE Trans. on Power Appar. and Syst., PAS-97, 4, pp. 1344–1354 (1978).
(5) R. Singh, M. Elizondo, S. Lu, A review of dynamic generator reduction methods for transient stability studies, IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2011.
(6) A. M. Miah, Study of a coherency-based simple dynamic equivalent for transient stability assessment, IET Gener., Transm. & Distrib., 5, 4, pp. 405–416 (2011).
(7) B. Marinescu, B. Mallem, L. Rouco, Large-scale power system dynamic equivalents based on standard and border synchrony, IEEE Trans. on Power Syst., 25, 4, pp. 1873–1882 (2010).
(8) J. H. Chow, Power System Coherency and Model Reduction, USA, Springer, New York, 2013, pp. 39–72.
(9) J. L. Jardim, A. M. L. Da Silva, A methodology for computing robust dynamic equivalents of large power systems, Electric Power Systems Research, 143, pp. 513–521 (2017).
(10) J. H. Chow, R. Galarza, P. Accari, W. W. Price, Inertial and slow coherency aggregation algorithms for power system dynamic model reduction, IEEE Trans. on Power Syst., 10, 2, pp. 680–685 (1995).
(11) R. Gueddouche, M. Boudour, Intelligent non-linear dynamic equivalent approach applied to Algerian power system, IET Gener., Transm. & Distrib., 13, 14, pp. 2919–2929 (2019).
(12) J. L. Rueda, J. Cepeda, I. Erlich, D. Echeverría, G. Argüello, Heuristic optimization-based approach for identification of power system dynamic equivalents, Int. J. of Electrical Power & Energy Syst., 64, pp. 185–193 (2015).
(13) A. T. Sarić, M. T. Transtrum, A. M. Stanković, Data-driven dynamic equivalents for power system areas from boundary measurements, IEEE Trans. on Power Syst., 34, 1, pp. 360–370 (2019).
(14) J. M. Ramirez, G. G. Garcia, Model order reduction by a statistical metric, IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Quito, Ecuador, 2017.
(15) M. R. A. Paternina, J. M. Ramirez-Arredondo, J. D. Lara-Jiménez, A. Zamora-Mendez, Dynamic equivalents by modal decomposition of tie-line active power flows, IEEE Trans. on Power Syst., 32, 2, pp. 1304–1314 (2017).
(16) J. Zhou, W. Zhu, Y. Zheng, C. Li, Precise equivalent model of small hydro generator cluster and its parameter identification using improved grey wolf optimizer, IET Gener., Transm. & Distrib., 10, 9, pp. 2108–2117 (2016).
(17) M. K. Transtrum, A. T. Sarić, A. M. Stanković, Measurement-directed reduction of dynamic models in power systems, IEEE Trans. on Power Syst., 32, 3, pp. 2243–2253 (2017).
(18) A. M. Azmy, I. Erlich, Identification of dynamic equivalents for distribution power networks using recurrent ANNs, IEEE PES Power Systems Conference and Exposition, New York, NY, USA, 2004.
(19) J. J. Sanchez-Gasca, J. H. Chow, Computation of power system low- order models from time domain simulations using a Hankel matrix, IEEE Trans. on Power Syst., 12, 4, pp. 1461–1467 (1997).
(20) S. A. Y. Sabir, D. C. Lee, Dynamic load models derived from data acquired during system transients, IEEE Trans. on Power Appar. and Syst., PAS-101, 9, pp. 3365–3372 (1982).
(21) J. A. de Kock, F. S. van der Merwe, H. J. Vermeulen, Induction motor parameter estimation through an output error technique, IEEE Trans. on Energy Conversion., 9, 1, pp. 69–76 (1994).
(22) O. Benmiloud, S. Arif, Optimal dynamic equivalence based on multi-objective formulation, 3rd International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algiers, Algeria, 2018.
(23) A. Savio, F. Bignucolo, R. Sgarbossa, P. Mattavelli, A. Cerretti, R. Turri, A novel measurement-based procedure for load dynamic equivalent identification, IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Turin, Italy, 2015.
(24) O. Benmiloud, S. Arif, Model order reduction of power systems preserving tie line flows, International Conference on Applied Smart Systems (ICASS), Medea, Algeria, 2018.
(25) J. M. Ramirez, Obtaining dynamic equivalents through the minimization of a line flows function, Int. J. of Electrical Power & Energy Syst., 21, 5, pp. 365–373 (1999).
(26) J. H. Chow, G. Rogers, Power System Toolbox Manual, Cherry Tree Scientific Software, 2000.
(27) P. Kundur, Power System Stability and Control, McGraw-Hill, 1994 [chapter 4].
(28) T. Tudorache, I. D. Ilina, L. Melcescu, Parameters estimation of an induction motor using optimization algorithms, Rev. Roum. Sci. Techn. – Électrotechn. Énerg., 61, 2, pp. 121–125 (2016).
(29) Y. Oubbati, S. Arif, Transient stability constrained optimal power flow using improved particle swarm optimization approach, Rev. Roum. Sci. Techn. – Électrotechn. Énerg., 61, 4, pp. 331–337 (2016).
(30) X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, Second Edition, 2010.
(31) S. Anbarasi, S. Muralidharan, Intelligent tuning of proportional integral derivative controller using hybrid bacterial foraging particle swarm optimization for automatic voltage regulator system, Rev. Roum. Sci. Techn. – Électrotechn. Énerg., 62, 3, pp. 325–331 (2017).
(32) M. Younes, Hybrid method for optimal power flow determination, Rev.Roum. Sci. Techn. – Électrotechn. et Énerg., 57, 3, pp. 249– 258 (2012).
(33) X. S. Yang, S. Deb, Cuckoo search via Lévy flights, World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 2009.
(34) X. S. Yang, S. Deb, Cuckoo search: recent advances and applications, Neural Computing and Applications, 24, 1, pp. 169–174 (2014).
(35) P. Barthelemy, J. Bertolotti, D. S. Wiersma, A Lévy flight for light, Nature, 453, pp. 495–498 (2008).
(36) S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software, 114, pp. 163–191 (2017).
(37) G. I. Sayed, G. Khoriba, M. H. Haggag, A novel chaotic salp swarm algorithm for global optimization and feature selection, Applied Intelligence, 48, 10, pp. 3462–3481 (2018).
(38) S. Mirjalili, SCA: A Sine Cosine Algorithm for Solving Optimization Problems, Knowledge-Based Systems, 96, pp. 120–133 (2016).
(39) A. A. Heidari et al., Harris Hawks Optimization: Algorithm and Applications, Future Generation Computer Systems, 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Romanian Journal of Technical Sciences, Electrical and Energy Series
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.