CHARACTERIZATION OF ELECTRICAL PROPERTIES OF 3D PRINTED BIOSENSORS WITH VARIOUS ELECTRODE GEOMETRIES

Authors

  • SORINA GOGONEAŢĂ Doctoral School of Electrical Engineering, University Politehnica of Bucharest, Bucharest, Romania Author
  • CĂTĂLIN MĂRCULESCU National Institute for Research and Development in Microtechnologies—IMT Bucharest, Romania Author
  • ALEXANDRU M. MOREGA Faculty of Electrical Engineering, University Politehnica of Bucharest, Romania; ”Gh. Mihoc – C. Iacob” Institute of Statistical Mathematics and Applied Mathematics, Romanian Academy, Bucharest, Romania Author

DOI:

https://doi.org/10.59277/RRST-EE.2023.68.2.21

Keywords:

Electrochemical biosensors, 3D printing, Electrodes, Electrode geometry, Electrochemical impedance spectroscopy

Abstract

This study explores the design and fabrication process of 3D-printed electrodes for electrochemical biosensors that detect ion concentration. The 3D printing process enables the production of electrodes with complex shapes. To determine their performance, cyclic voltammetry, and electrochemical impedance spectroscopy were used to test the electrodes’ ability to detect changes in ion concentration. The results reveal the impact of electrode geometry on biosensor performance.

References

(1) J.I.A. Rashid, N.A. Yusof, The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review, Sens. Bio-Sensing Res., 16, pp. 19–31 (2017).

(2) H.A. Abdulbari, E.A.M. Basheer, Electrochemical biosensors: electrode development, materials, design, and fabrication, ChemBioEng Rev., 4, 2, pp. 92–105 (2017).

(3) J. Contreras, V. Perez-Gonzalez, M. Mata, O. Aguilar, 3D-printed hybrid-carbon-based electrodes for electroanalytical sensing applications, Electrochem. commun., 130, p. 107098 (2021).

(4) D. Dăscălescu, C. Apetrei, Development of a novel electrochemical biosensor based on organized mesoporous carbon and laccase for the detection of serotonin in food supplements, Chemosensors, 10, 9, p. 365 (2022).

(5) L.R. Silva, A. Gevaerd, L. Marcolino Jr., M. Bergamini, T. Almeida Silva, B. Janegitz, 3D-printed electrochemical devices for sensing and biosensing of biomarkers, Advances in Bioelectrochemistry, 2, pp. 121–136 (2022).

(6) H. Wei, X. Cauchy, I. O. Navas, Y. Abderrafai, K. Chizari, U. Sundararaj, Y. Liu, J. Leng, D. Therriault, Direct 3D printing of hybrid nanofiber-based nanocomposites for highly conductive and shape memory applications, ACS Appl. Mater. Interfaces, 11, 27, pp. 24523–24532 (2019).

(7) S.H.R. Sanei, D. Popescu, 3D-printed carbon fiber reinforced polymer composites: a systematic review, J. Compos. Sci., 4, 3, 98 (2020).

(8) C. Callanan, L. Hsu, A. McGee, Formulation and evaluation of carbon black 3D printing materials, OCEANS 2018 MTS/IEEE Charleston (2018).

(9) Y. Zheng, X. Huang, J. Chen, K. Wu, J. Wang, X. Zhang, A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications, Materials, 14, 14, p. 3911 (2021).

(10) Z.C. Kennedy, J.F. Christ, K.A. Evans, B.W. Arey, L.E. Sweet, M.G. Warner, R.L. Erikson, C. A. Barrett, 3D-printed poly (vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform, Nanoscale, 9, 17, pp. 5458–5466 (2017).

(11) H. Guo, R. Lv, S. Bai, Recent advances on 3D printing graphene-based composites, Nano Mater. Sci., 1, 2, pp. 101-115 (2019).

(12) L.R.G. Silva, J.S. Stefano, L.O. Orzari, L.C. Brazaca, E. Carrilho, L.H. Marcolino-Junior, M.F. Bergamini, R.A. A. Munoz, B.C. Janegitz, Electrochemical biosensor for SARS-CoV-2 cDNA detection using aups-modified 3D-printed graphene electrodes, Biosensors, 12, p. 622 (2022).

(13) C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Advanced carbon for flexible and wearable electronics, Adv. Mater., 31, 9, p. 1801072 (2019).

(14) C. Marculescu, P. Preda, T. Burinaru, E. Chiriac, B. Tincu, A. Matei, O. Brincoveanu, C. Pachiu, M. Avram, Customizable fabrication process for flexible carbon-based electrochemical biosensors, Chemosensors, 11, 4, p. 204 (2023).

(15) S. Handaja, H. Susanto, H. Hermawan, Electrical conductivity of carbon electrodes by mixing carbon rod and electrolyte paste of spent battery, Int. J. Renew. Energy Dev., 10, 2, pp. 221–227 (2021).

(16) S.J. Bharathi, S.H. Thilagar, V. Jayasurya, Design of electrochemical sensor and determining the peak current of ions in solution, IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), pp. 1–4, (2019).

(17) M. Xu, D. Obodo, V.K. Yadavalli, The design, fabrication, and applications of flexible biosensing devices, Biosens. Bioelectron., 124–125, pp. 96–114 (2019).

(18) A. Ambrosi, A. Bonanni, How 3D printing can boost advances in analytical and bioanalytical chemistry, Microchim. Acta, 188, 8, p. 265 (2021).

(19) B. Tincu, T. Burinaru, A.-M. Enciu, P. Preda, E. Chiriac, C. Marculescu, M. Avram, A. Avram, Vertical graphene-based biosensor for tumor cell dielectric signature evaluation, Micromachines, 13, 10, p. 1671 (2022).

(20) T. A. Burinaru, B. Tincu, M. Avram, P. Preda, A.-M. Enciu, E. Chiriac, C. Mărculescu, T. Constantin, M. Militaru, Electrochemical impedance spectroscopy based microfluidic biosensor for the detection of circulating tumor cells, Mater. Today Commun., 32, p. 104016 (2022).

Downloads

Published

03.07.2023

Issue

Section

Génie biomédical | Biomedical Engineering

How to Cite

CHARACTERIZATION OF ELECTRICAL PROPERTIES OF 3D PRINTED BIOSENSORS WITH VARIOUS ELECTRODE GEOMETRIES. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(2), 241-246. https://doi.org/10.59277/RRST-EE.2023.68.2.21