MECHANICAL SENSOR FAULT-TOLERANT CONTROLLER IN PMSM DRIVE: EXPERIMENTAL EVALUATION OF OBSERVERS AND SIGNAL INJECTION FOR POSITION ESTIMATION

Authors

  • SLIMANE MEDJMADJ Laboratory of Control Univ.of Setif and university of Bordj Bou Arreridj Author
  • DEMBA DIALLO Université Paris-Saclay, CentraleSupélec, CNRS, Group of Electrical Engineering Paris, Sorbonne Université Author
  • ANTONI ARIAS UPC, Barcelona, Spain Author

Keywords:

Permanent-Magnet Synchronous Motor, Sensorless Control, Fault Tolerant Control (FTC), High Frequency Injection, Kalman Filter

Abstract

This paper presents the operating principle, results and conclusions for an FTC mechanical sensor that can guarantee continuity of operation on the whole speed range. This active FTC is based on analytical redundancy using three different estimators (an Extended Kalman Filter (EKF), a back electromotive force based observer (back-EMF observer) and a high frequency voltage injection (HFI). Thanks to this structure, the mechanical measurement is continuously monitored and at sensor fault occurrence the sensorless controller can be engaged using the best estimate. From numerical simulations and experimental results on a 1.1kW salient PMSM drive, the following conclusion has been drawn : at low and zero speed, the drive availability is obtained with the combination of the EKF and the HFI while for higher speeds EKF and back-EMF observer have better performance.

References

(1) A. Khlaief, M. Boussak, M. Gossa, Open phase faults detection in PMSM drives based on current signature analysis, International Congress of Electrical Machines, Rome, 6–8, pp. 1–6, Sep. 2010.

(2) M. Benbouzid, C. Delpha, Z. Khatir, S. Lefebvre, D. Diallo, Faults detection and diagnosis in a static converter", 2011, pp. 271-316, Electrical Machines Diagnosis, Trigeassou, J.C., Paris, Wiley, ISTE.

(3) D. Diallo, M. Benbouzid, M.A Masrur; Special Section on condition monitoring and fault accommodation in electric and hybrid propulsion systems, IEEE Transactions on Vehicular Technology, 62, 3, pp. 962–964 (2013).

(4) N. Layadi, A. Djerioui, S. Zeghlache, H. Mekki, A. Houari, M. Benkhoris, F. Berrabah, New fault tolerant control based on backstepping controller for double star induction machine, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 64, 3, pp. 275–280, Bucarest (2019).

(5) Y. Fan, W. Zhu, X. Zhang, M. Cheng, K. T. Chau, research on a single phase-loss fault-tolerant control strategy for a new flux- modulated permanent-magnet compact in-wheel motor, IEEE Trans. on Energy Conv. 31, 2, pp. 658-666, (2016).

(6) E. Benyoussef, A. Meroufel, S. Barkat, "Neural network and fuzzy logic direct torque control of sensorless double star synchronous machine", Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 61, 3, pp. 239–243, Bucarest, 2016.

(7) P.P. Vas, "Sensorless Vector and Direct Torque Control". London, U.K., Oxford Univ. Press, 1998.

(8) C.S. Hsieh, F. C. Chen, Optimal solution of the two-stage Kalman estimator, IEEE Trans. Autom. Control, 44, 1, pp. 194–199 (1999).

(9) Z. Chen, M. Tomita, S. Doki, S. Okuma, An extended electromotive force model for sensorless control of interior permanent magnet synchronous motors, IEEE Trans. Ind. Electron., 50, 2, pp. 288– 295 (2003).

(10) S. Diao, D. Diallo, Z. Makni, C. Marchand, J.F. Bisson, A differential algebraic estimator for sensorless permanent-magnet synchronous machine drive", IEEE Trans. on Energy conversion, 30, 1, pp. 82–89 (2015).

(11) B. Belabbes, A. Larbaoui, Commande passive associée à la commande par beckstepping d’un moteur synchrone, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 60, 3, p. 333–342 (2015).

(12) A. Larbaoui, B. Belabbes, A. Meroufel, D. Bouguenna, Commande par mode glissant floue de la machine synchrone, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 62, 2, pp. 192–196 (2017).

(13) M. Hilairet, F. Auger, E. Berthelot, Speed and rotor flux estimation of induction machines using a two-stage extended Kalman filter, Automatica, 45, 8, pp. 1819–1827 (2009).

(14) S. Bolognani, S. Calligaro, R. Petrella, M. Tursini, Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing, IEEE Trans. Ind. Appl., 47, 1, pp. 96–104 (2011).

(15) Y. Yu, J. Tamura, D. D. Reigosa, R. D. Lorenz, Position self-sensing evaluation of a FI-IPMSM based on high-frequency signal injection methods, IEEE Trans. Ind. Appl., 49, 2, pp. 880–888 (2013).

(16) J. Holtz, Sensorless control of induction machines – with or without signal injection? IEEE Trans. on Ind. Electronics., 53, 1, pp. 7-30 (2006).

(17) M.S. Grewal, A. P. Andrews, Kalman Filtering, Theory and Practice, Englewood Cliffs, NJ, Prentice-Hall, 1993.

(18) F. Auger et al., Industrial applications of the Kalman filter: a review, IEEE Trans. on Ind. Electronics, 60, 12, pp. 5458-5470 (2013).

(19) Z. Boulbair, M. Hilairet, F. Auger, L. Loron, Sensorless control of a PMSM using an efficient extended Kalman filter, Int. Conf. of Electrical Machines ICEM04, Cracovia, Poland, 2004.

(20) M. Shigeo, K. Keisuke, T. Yoji, Position and speed sensorless control for IPMSM based on estimation of position error, Electrical Engineers of Japan, 144, 2, pp. 722-729 (2003).

(21) J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, A. Astolfi, Sensorless control of surface-mount permanent magnet synchronous motors based on a nonlinear observer, " IEEE Trans. on Power Electronics, 25, 2, pp. 290-297 (2010).

(22) A. Sarikhani, O.A. Mohammed, Sensorless control of PM synchronous machines by physics-based EMF observer, IEEE Trans. Energy Convers., 27, 4, pp. 1009–1017 (2012).

(23) Y.D. Yoon, S.K. Sul, S. Morimoto, K. Ide, High-bandwidth sensorless algorithm for AD machines based on square-wave-type voltage injection, IEEE Trans. Ind. Appl., 47, 3, pp. 1361–1370 (2011).

(24) X. X. Luo, Q. Tang, A. Shen, Q. Zhang, PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed- frequency rotating reference frame, IEEE Trans. Ind. Electron., 63, 4, pp. 2294–2305 (2016).

(25) C. Silva, G. M. Asher, M. Sumner, Hybrid rotor position observer for wide speed-range sensorless PM motor drives including zero speed, IEEE Trans. Ind. Electron., 53, 2, pp. 373–378 (2006).

(26) M. W. Degne, R. D. Lorenz, Using multiple saliencies of the estimation of flux, position, and velocity in AC machines, IEEE Trans. Ind. Appl., 34, 5, pp. 1097–1104, (1998).

(27) R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, 2006

(28) D.R. Espinoza, D. U. Campos-Delgado, Active fault tolerant scheme for variable speed drives under actuator and sensor faults, Proc. IEEE Int. Conf. Control Appl., San Antonio, TX, USA, Sep. 2008, pp. 474–479.

(29) J. Jiang, Xiang Yu, Fault-tolerant control systems: A comparative study between active and passive approaches", ISA Trans., Elsevier, 36, pp. 60–72 (2012).

(30) B. Tabbache, M. Benbouzid, A. Kheloui, J.M Bourgeot, Sensor fault- tolerant control of an induction motor based electric vehicle, European Conf. on Power Electroni and Applications, Aug. 2011.

(31) M. Bourogaoui, H. BenAttia Sethom, I. S. Belkhodja, Speed/position sensor fault tolerant control in adjustable speed drives – a review, ISA Trans., Elsevier, 64, pp. 269 –284 (2016).

Downloads

Published

02.07.2021

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

MECHANICAL SENSOR FAULT-TOLERANT CONTROLLER IN PMSM DRIVE: EXPERIMENTAL EVALUATION OF OBSERVERS AND SIGNAL INJECTION FOR POSITION ESTIMATION. (2021). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 66(2), 77-83. https://journal.iem.pub.ro/rrst-ee/article/view/52