ADAPTIVE NON-LINEAR VOLTAGE CONTROLLER BASED MULTIVARIABLE SLIDING MODE EXTREMUM SEEKING APPROACH APPLIED TO MULTI-MACHINE POWER SYSTEM

Authors

  • AMEL ABBADI Electrical Engineering Department, Research Laboratory in Electrical Engineering and Automatic LREA, University of Médéa, Médéa Author
  • FETHIA HAMIDIA Electrical Engineering Department, Research Laboratory in Electrical Engineering and Automatic LREA, University of Médéa, Médéa Author
  • YOUNES CHIBA Faculty of Technology, Department of Mechanical Engineering, University of Médéa, Médéa Author

DOI:

https://doi.org/10.59277/

Keywords:

Voltage regulation, transient stability enhancement, adaptive controller, Multivariable sliding extremum seeking, Multimachines power system, Online gain adjustment

Abstract

The goal of this work is to construct an adaptive nonlinear voltage control law using a multivariable sliding extremum seeking (SES) technique. The developed scheme is applied to ensure the transient stability enhancement and the voltage regulation of the multi-machine power system. This control scheme can be depicted as an intelligent adaptive controller. It is a non-model-based method since the multivariable SES approach tunes online the gains of the nonlinear voltage controller based on the minimization of a cost function without needing knowledge of the nonlinear model of the multi-machine power system. This cost function represents the performance of the system. The efficiency and effectiveness of the proposed approach are discussed through different multi-machine power systems under different disturbances, initials conditions, and system configurations.

References

(1) P. Kundur, Power system stability and control. McGraw-Hill, New York, 1994.

(2) A. Abdelaziz, K. Keltuom, Power system stabilizer based on terminal sliding mode control, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg, 62, 1, pp. 98–102 (2017).

(3) K.R. Padiyar, Power System Stability and Dynamics, second edition, BS Publications, 2002.

(4) P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, Definition, and classification of power system stability. IEEE Trans. Power Syst., 19, 2, pp. 1387–1401(2004).

(5) H. Labdelaoui, F. Boudjema, D. Bouthetala, Multiobjective optimal design of dual-input power system stabilizer using genetic algorithms. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg, 62, 1, pp. 93–97 (2017).

(6) A.D. Falehi, M. Rostami, H. Mehrjardi, Transient Stability Analysis of Power System by Coordinated PSS-AVR design based on pso technique, Engineering, 3, 4, pp. 478-484 (2011).

(7) A. Zebar, A. Hamouda, K. Zehar, Impact of the location of fuzzy controlled static VAR compensator on the power system transient stability improvement in presence of distributed wind generation, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 60, 4, pp. 426–436, (2015)

(8) R. Yan, Z.Y. Dong, T.K. Saha, R. Majumder, Power system transient stability enhancement with an adaptive control scheme using backstepping design, IEEE Power Engineering Society General Meeting, June, pp. 1-8 (2007).

(9) S. Abazari, M. Heidari, N.R. Abjadi, Adaptive control design for a synchronous generator, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg. 59, 4, pp. 411-421(2014).

(10) S. Benahdouga, D. Boukhetala , F. Boudjema , Decentralized high order sliding mode control of multimachine power systems, Int. J. Electr Power Energy Syst., 43,1, pp.1081-1086 (2012 ).

(11) H. Huerta, A.G. Loukianov, J.M. Cañedo, Decentralized sliding mode block control of multimachine power systems, Int. J. Electr. Power Energy Syst. 32, 1, pp.1-11 (2010).

(12) C. Zhu, R. Zhou, Y. Wang, A new decentralized nonlinear voltage controller for multimachine power systems, IEEE Trans. Power Syst. 13, 1, pp. 211-216 (1998).

(13) A. Abbadi, L. Nezli, D. Boukhetala, A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multimachine power systems, Int. J. Electr. Power Energy Syst., 45, pp. 456-67 (2013).

(14) P. Zhao, W. Yao, J. Wen, L. Jiang, S. Wang, S. Cheng, Improved synergetic excitation control for transient stability enhancement and voltage regulation of power systems, Int. J Electr. Power Energy Syst., 68, pp. 44–51 (2015).

(15) Y. Wang, D.J. Hil, Robust nonlinear coordinated control of power systems, Automatica, 32, pp. 611-618 (1996).

(16) Y. Guo, D.J. Hill, Y. Wang, Global transient stability and voltage regulation for power systems, IEEE Trans. on Power Systems, 16, 4, pp. 678-688 (2001).

(17) R. Chaudhary, A.K. Singh, Transient stability improvement of power system using non-linear controllers, Energy and Power Engineering, 6, 1, pp.10–16 (2014).

(18) M. Kristic, Extremum seeking control, in T. Samad and J. Baillieul, Encyclopedia of Systems and Control, Springer, 2014.

(19) K.B. Ariyur, M. Krstic, Real-time optimization by extremum-seeking control, Wiley-Interscience, 2003.

(20). T. Roux-Oliveira, L.R. Costa, A.V. Pino, P. Paz, Extremum seeking-based adaptive PID control applied to neuromuscular electrical stimulation, Medicine, Biology, Analis da Academia Brasileira de Ciencias, 91, pp. 1-20 (2019).

(21) N.J. Killingsworth, M. Krstic, PID tuning using extremum seekin’. IEEE Control Systems Magazine, IEEE Control Syst, 26, 1, pp. 70-79 (2006).

(22) Q. Chen, Y. Tan, J. Li, I. Mareels, Decentralized PID control design for magnetic levitation systems using extremum seeking, IEEE Access, 6, pp. 3059–3067 (2018).

(23) S.F Toloue, S.H Kamali, M. Moallem, Multivariable sliding-mode extremum seeking PI tuning for current control of a PMSM. IET Electric Power Applications. 14, 3, pp. 348-356 (2020).

(24) B. Ouamri, A.F. Zoubir, Comparative analysis of robust controller based on classical proportional-integral controller approach for power control of wind energy system, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 63, 2, pp. 210-216, (2018)

(25) G. Bartolini, L. Fridman, A. Pisano, E. Usai. Modern Sliding Mode Control Theory. New Perspectives and Applications, lectures note in control and information sciences, Springer, Berlin Heidelberg, Germany, 2008.

(26) S. Chen, L. Wang, K. Ma, H. Zhao, A switching-based extremum seeking control scheme, Int. J. Control, 90, 8, pp. 1688-1702 (2017).

(27) Y. Pan, Ü. Özgüner, T. Acarman, Stability and performance improvement of extremum seeking control with sliding mode, Int. J. Control, 76, 9-10, pp. 968–985 (2003).

(28) S. Chen, L. Wang, K. Ma, H. Zhao, A switching-based extremum seeking control scheme, Int. J. Control, 90, 8, pp. 1688-1702 (2016)

Downloads

Published

12.03.2022

Issue

Section

Automatique et ordinateurs | Automation and Computer Sciences

How to Cite

ADAPTIVE NON-LINEAR VOLTAGE CONTROLLER BASED MULTIVARIABLE SLIDING MODE EXTREMUM SEEKING APPROACH APPLIED TO MULTI-MACHINE POWER SYSTEM. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(1), 65-72. https://doi.org/10.59277/