• MAJDI BOUSSOFFARA University of Tunis El Manar, Faculty of Sciences of Tunis (FST), Laboratory Analysis and Processing of Electrical and Energy Systems, Tunisia Author
  • IKBEL BEN CHEIKH AHMED University of Tunis El Manar, National Engineering School of Tunis, Automatic Research Laboratory L.A.R.A Tunisia Author
  • ZIED HAJAIEJ University of Tunis El Manar, National Engineering School of Tunis, Automatic Research Laboratory L.A.R.A Tunisia Author


Sliding mode control, Flexible joint manipulator, Lyapunov stability theory, Hurwitz conditions, Trajectory tracking


Flexible robots are subject of many research-works since their advantages in terms of safety, compliance, low energy consumption, manoeuvrability, high payload to manipulator weight ratio, low cost, and high speed. However, the flexibility of manipulator’s links or joints and the under-actuation leads to complexity in the modelling and control. To deal with this problem, a sliding mode control is designed and applied to a presented model of the system. So, this paper presents the modelling of flexible joint manipulator, the design of adequate sliding mode controller which can stabilize the flexible joint manipulator. The robust tracking performance will be proved in the simulation.


(1) V. Potkonjak, K. M. Jovanovic, P. Milosavljevic, N. Bascarevic, O. Holland, The puller-follower control concept in the multi-jointed robot body with antagonistically coupled compliant drives, in IASTED International Conference on Robotics, pp. 375–381 (2011).

(2) J. Iqbal, N. Tsagarakis, D. Caldwell, Four-fingered lightweight exoskelet on robotic device accommodating different hand sizes, Electronics Letters, 51, pp. 888–890 (2015).

(3) J. Hidalgo, P. Pantelis, J. Kohler, J. Del-Cerro, A. Barrientos, Improving planetary rover attitude estimation via MEMS sensor characterization, Sensors, 12, pp. 2219-2235 2012.

(4) K. Baizid, A. Meddahi, A. Yousnadj, R. Chellali, H. Khan, J. Iqbal, Robotized task time scheduling and optimization based on Genetic Algorithms for non-redundant industrial manipulators, IEEE International Symposium on Robotic and sensors Environments, pp. 112–117 (2014).

(5) M. I. Ullah, S. A. Ajwad, R. U. Islam, U. Iqbal, J. Iqbal, Modeling and computed torque control of a 6 degree of freedom robotic arm, IEEE International Conference on Robotics and Emerging Allied Technologies in Engineering, pp. 133–138, 2014.

(6) M. F. Khan, R. U. Islam, J. Iqbal, Control strategies for robotic manipulators, IEEE International Conference on Robotics and Artificial Intelligence (ICRAI), pp. 26–33, 2012.

(7) B. Siciliano, O. Khatib, Springer Handbook of Robotics, Springer, 2016.

(8) B. Subudhi, A.S. Morris, Dynamic, modelling simulation and control of a manipulator with flexible links and joints, Robot. Auton. Syst., 41, pp. 257–270 (2002).

(9) A. Albu-Schaffer, , O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimbock, S. Wolfet G. Hirzinger, Soft robotic, Robotics & Automation Magazine, IEEE, 15, 3, pp. 20–30 (2008).

(10) A. De Luca, S. Iannitti, R. Mattone, G. Oriolo. Control problems in underactuated manipulators. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2, pp. 855–861 (2001).

(11) Z. Mohamed, M. Tokhi, Command shaping techniques for vibration control of a flexible robot manipulator, Mechatronics, 14, pp. 69–90 (2004).

(12) W. J. Book, M. Majette, Controller Design for Flexible Distributed Parameter Mechanical Arms Via Combined State Space and Frequency Domain Techniques, 1983.

(13)Y. Sakawa, F. Matsuno, S. Fukushima, Modeling and feedback control of a flexible arm, J. Robotic Syst., 2, 4, pp. 453-472 (1985).

(14) S. Ajwad, M. Ullah, B. Khelifa, J. Iqbal, A comprehensive state- of-the-art on control of industrial articulated robots, Journal of Balkan Tribological Association, 20, pp. 499–521 (2014).

(15) S. A. Ajwad, J. Iqbal, M. I. Ullah, A. Mehmood, A systematic review of current and emergent manipulator control approaches, Frontiers of Mechanical Engineering, 10, pp. 198–210 (2015).

(16) N. Ali, W. Alam, M. Pervaiz, J. Iqbal, Non linear adaptive backstepping control permanent magnet asynchronous motor, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 66, 1, pp. 9–14 (2021).

(17) O. Khan, M. Pervaiz, E.Ahmad, J. Iqbal, On the derivation of novel model and sophisticated control of flexible joint, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 62, 1, pp. 103–108 (2017).

(18) J.-J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall London, 1991.

(19) Y. Deia , M. Kidouche, and M. Becherif, Decentralized robust sliding mode control for a class of interconnected nonlinear systems with strong interconnections, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 62, 2, pp. 203–208 (2017).

(20) Levant, A. (Levantovsky, L.V.), 1993, Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58, 1247–1263

(21) T. L. Liao, L.C. Fu, C.F. Hsu, Output tracking control of nonlinear systems with mismatched uncertainties, Systems and Control Letters, 1, pp. 39–47 (1992).

(22) M.-L. Chan, C.W. Tao, T.T. Lee, Sliding mode controller for linear systems with mismatched time-varying uncertainties, Journal of the Franklin Institute, 337, pp. 105–115 (2000).

(23) Y. Xia, Y. Jia, Robust Sliding-Mode Control for Uncertain Time- Delay Systems: An LMI Approach, IEEE Transactions on Automatic Control, 48, pp. 1086–1092 (2003).

(24) F. Piltan, N. B. Sulaiman, Review of sliding mode control of robotic manipulator, World Applied Sciences Journal, 18, 1, pp. 1855–1869 (2012).

(25) S. Drakunov, V. Utkin, Sliding mode control in dynamic systems, International Journal of Control, 55, 4, pp. 1029-1037 (1992).

(26) S. K. Spurgeon , L. Yao, X.Y. Lu, Robust tracking via sliding mode control for elastic joint manipulators, Proc. IMechE, Part I: J. Systems and Control Engineering, 215, pp. 405–417 (2001).

(27) S. Zaare, M.R Soltanpour, M.Moattari, Voltage based sliding mode control of flexible joint robot manipulators in presence of uncertainties, Robot. Auton. Syst., 118, pp. 204–219 (2019).

(28) M. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control, Springer-Verlag London Limited, 2009.

(29) H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, N. J., 2002.

(30) M. W. Spong, Modeling and Control of Elastic Joint Robots, Journal of Dynamic Systems, Measurement, and Control, 109, 4, p. 310, (1987).

(31) Quanser handout, Rotary flexible joint module, accessed on July 24, 2016. Available on:






Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite