PHENOMENOLOGICAL MODEL OF THE FREQUENCY-DEPENDENT HYSTERESIS OF FERRITE NiFe2O4

Authors

  • ABDELAZIZ LADJIMI Université 8 Mai 1945 Guelma, Laboratoire de Génie Electrique (LGEG), BP. 401, Guelma, 24000
  • MOURAD DAFRI Université 8 Mai 1945 Guelma, Laboratoire de Génie Electrique (LGEG), BP. 401, Guelma, 24000
  • SOFIANE FISLI Université 8 Mai 1945 Guelma, Laboratoire d'Automatique et Informatique (LAIG), BP. 401, Guelma, 24000

Keywords:

Static Preisach model, Student function, Frequency, Ferrite sheets, Hysteresis loops

Abstract

In this paper, a phenomenological model of dynamic hysteresis based on the static Preisach model has been developed to generate hysteresis loops, which are assumed to be a frequency function of the exciting magnetic field. The frequency effect was introduced through a new model of the frequency-dependent behavior of the Student function parameters a and b. The simulated hysteresis loops obtained using our proposed model show a good agreement with a real hysteresis loop obtained via measurements performed on a ferrite material NiFe2O4.

References

(1) F. Hamidia, A. Abbadi, A. Telemcani, Improved pumping system supplied by double photovoltaic panel, Rev. Roum. Sci. Techn.–Électrotechn. et Énerg. 64, 1, pp. 87–93, Bucarest, (2019).

(2) D.C. Jiles, Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media, IEEE Transactions on Magnetics, 30, 6, pp. 4326-4328, Nov. 1994.

(3) R. Malczyk, J. Izydorczyk, The frequency-dependent Jiles-Atherton hysteresis model, Phys. B Condens. Matter, 463, pp. 68–75, 2015.

(4) A. Ladjimi, A. Babouri, Modeling of frequency effects in a Jiles-Atherton magnetic hysteresis model, Rev. Roum. Sci. Techn.–Électrotechn. et Énerg. 61, 3, pp. 217–220, Bucarest, (2016).

(5) G. Bertotti, Dynamic generalization of the scalar Preisach model of hysteresis, IEEE Transactions on Magnetics, 28, 5, pp. 2599-2601, Sept. 1992.

(6) Y. Bernard, E. Mendes, F. Bouillault, Dynamic hysteresis modeling based on Preisach model, IEEE Transactions on Magnetics, 38, 2, pp. 885-888 (2002).

(7) P. Chandra Sarker, Y. Guo, H. Yan Lu, J.G. Zhu, A generalized inverse Preisach dynamic hysteresis model of Fe-based amorphous magnetic materials, J. of Magnetism and Magnetic Materials, 514, 167290 (2020).

(8) A. Bermúdez, D. Gómez, P. Venegas, Mathematical analysis and numerical solution of models with dynamic Preisach hysteresis, J. Comput. Appl. Math., 367, p. 112452 (2020).

(9) M. Dafri, A. Lajimi, S. Mendaci, A. Babouri, Modeling of magnetic hysteresis using Student distribution, J. Supercond. Nov. Magn., 33, pp. 3865–3869 (2020).

(10) M. Dafri, et al. Phenomenological model of the temperature dependence of hysteresis based on the Preisach model, J. Supercond. Nov. Magn., 34, 1453–1458 (2021).

(11) F. Preisach, Über die magnetische nachwirkung, Zeitschrift Für Physik (1935).

(12) I.D. Mayergoyz, Mathematical models of hysteresis and their applications, IEEE Trans. Power Systems (1992)

(13) Y. Bernar, E. Mendes, Z. Ren, A new method for the determination of the parameters in Preisach model, CEFC’98. 402, Tucson. Arizona. USA (1998).

(14) I.D. Mayergoyz, Mathematical Models of Hysteresis. Edition Elsevier (2003).

(15) S. Clénet, F. Piriou, Identification de la fonction d'Everett pour le modèle de Preisach, MGE 2000, France, Lille, 13-14 Décembre, pp. 71-74 (2000).

(16) G. Bertotti, V. Basso, Considerations on the physical interpretation of the Preisach model of ferromagnetic hysteresis, Journal of Applied Physics, 73, 5827 (1993).

(17) V. Ioniţă et al., Hysteresis modeling accuracy for soft magnetic nanopowders, Rev. Roum. Sci. Techn.–Électrotechn. et Énerg. 63, 1, pp. 11–14, Bucarest, (2018).

(18) P. Pruksanubal, A. Binner, K.H. Gonschorek, Modeling of magnetic hysteresis using Cauchy distribution, 3rd International Symposium on Electromagnetic Compatibility, pp. 446-449 (2002).

(19) Y.O. Amor, M. Féliachi, Présentation d'une fonction de Lorentz modifiée pour une modélisation de l'hystérésis magnétique, Colloque MGE 2000 sur les matériaux du génie électrique - Lille Décembre 2000.

(20) R. Eberhar, J. Kennedy, A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43 (1995).

(21) R. Marion, R. Scorretti, N. Siauve, M. Raulet, L. Krahenbuhl, Identification of Jiles–Atherton model parameters using particle swarm optimization," in IEEE Transactions on Magnetics, 44, 6, pp. 894-897, June 2008.

Downloads

Published

30.09.2022

Issue

Section

Électrotechnique et électroénergétique / Electrical and Power Engineering