ARTIFICIAL NEURAL NETWORK PREDICTION PARAMETERS OF 10%SF6-90%N2 MIXTURE

n/a

Authors

  • FAISSEL BELOUCIF LGEG Laboratory, Université 8 mai 1945 Guelma. BP.401, Algeria Author
  • AMAR BOUDEFEL LGEG Laboratory, Université 8 mai 1945 Guelma. BP.401, Algeria Author
  • ASSIA GUERROUI LGEG Laboratory, Université 8 mai 1945 Guelma. BP.401, Algeria Author
  • AHCENE LEMZADMI LGEG Laboratory, Université 8 mai 1945 Guelma. BP.401 Author
  • ABDELKRIM MOUSSAOUI LGEG Laboratory, Université 8 mai 1945 Guelma. BP.401 Author

Keywords:

Sulfur hexafluoride, Gas mixture SF6-N2, Onset voltages, Corona discharges, Ionic mobility

Abstract

The present study outlines the application of Artificial Neural Networks for the Prediction of corona discharge parameters in SF6-N2 gas mixture. The artificial neural networks modeling is used to predict corona discharge temperature, ionic mobility, and onset voltages for different gas pressures with a mixture of 10% SF6 - 90% N2, and using experimental data obtained previously. The results of artificial neural networks' prediction of ionic mobility (μ) onset voltages (Vs) and temperature are found to be around ± 6% for training as well as for testing and are significantly consistent with the experimental values.

References

(1) L. G. Christophorou, J.K. Olthof, R.J. Vanbrunt, Sulfur Hexafluoride, and the Electric Power Industry, IEEE Elec. Insul. Mag. 13, 5, pp. 20-24 (1997).

(2) L. Xingwen, H. Zhao, A. Bruce Murphy, SF6-N2 alternative gases for application in gas-insulated switchgear, J. Phys. D: Appl. Phys. 51, 15, pp.153001-153025 (2018).

(3) C.M. Franck, A. Chachereau, J. Pachin, SF6-free gas-insulated switchgear: current status and future trends, IEEE, Electrical Insulation Magazine, 37, 1, pp.1-23 (2021).

(4) C. Breidenich, D. Magraw, , J.W. Rubin, The Kyoto Protocol to the United Nations Framework Convention on Climate Change, American Journal of International Law, 92, 2, pp. 315–331 (1998).

(5) P. Forster, V. Ramaswamy, P. Artaxo, et al., Changes in Atmospheric Constituents and in Radiative Forcing, Climate Change, The Physical Science Basis – Contribution of Working (2007).

(6) Y. Kieffel, T. Irwin, P. Ponchon, J. Owens, Green gas to replace SF6 in electrical grids, IEEE Power Energy Mag., 14, pp.32–39 (2016).

(7) European Union, Regulation (EU) No 517/2014 of the European Parliament and of the council of 16 April 2014 on, fluorinated greenhouse gases and repealing Regulation (EC), No. 842/2006, Official Journal of the European Union (2014).

(8) G. Mauthe, L. Niemeyer, B.M. Pryor, R. Probst, H. Bräutigam, P.A. O'Connell, K. Pettersson, H.D. Morrison, J. Poblotzki, D. Koenig, Task Force 01 of Working Group 23.10, SF6 and the Global Atmosphere, Electra, 164, pp. 121–131 (1996).

(9) L. Niemeyer, F.Y. Chu, SF6 and the atmosphere, IEEE Trans. Electr. Insul., 27, 1, pp. 184–187(1992).

(10) E. Kuffel, W.S. Zaengl, J. Kuffel, High voltage engineering fundamentals, Second edition, pp. 298-290 (2000).

(11) Y. P. Raizer, Gas Discharge Physics, Abridged translation of original Russian edition, Fizika gazovogo razryada- Moscovo, Nauka, Moscow, pp. 37-47 (1987).

(12) G.W. Irwin, K. Warwick, K. Hunt, Neural network applications in control, Pub. by the Institution of Electrical Engineers, London, United Kingdom, pp. 91-110 (1995).

(13) S. Haykin, Neural Networks: a Comprehensive Foundation, Upper Saddle River, N.J., Prentice Hall (1999).

(14) S.S. Tezcan, M.S. Dincer, H.R. Hiziroglu, Calculation of Breakdown Voltages in Ar + SF6 Using an Artificial Neural Network, 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2005).

(15) S.S. Tezcan, M.S. Dincer, H.R. Prediction of breakdown voltages in N2+SF6 gas mixtures, 2006 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2006).

(16) B. Monchusi, S. Letlotla, H. Ilgner, J. McGill, Modeling of Breakdown Voltage by Artificial Neural Network, 4th Robotics and Mechatronics Conference of South Africa (Robmech 2011) 23-25 November 2011, CSIR Pretoria South Africa (2011).

(17) K. Hornik, M. Stinchcombe, H. White, Multilayer feed forward networks are universal approximations, Neural Networks, 2, 5, pp. 359-366 (1989).

(18) V. Kůrková, Kolmogorov's theorem, and multilayer neural networks, Neural Networks, 5, 3, pp. 501-506 (1992).

(19. Z. Wang, Y. Liu, P.J. Griffin, A combined ANN and expert system tool for transformer fault diagnosis. IEEE Trans. Power Deliv. 13, pp.1224-1229 (2000).

(20) B.G. Kermania, S.S. Schiffman, H. Troy Naglea, Performance of the Levenberg–Marquardt neural network training method in electronic nose applications, Sensors and Actuators B: Chemical, 110, 1, pp. 13-22 (2005).

(21) F.H. Pereira, F.E. Bezerra, S. Junior, J. Santos, and all, Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations, Energies, 11, 7, pp. 1-12 (2018).

(22) T. Nitta, Y. Shibuya, Electrical breakdown of long gaps in sulfur hexafluoride, IEEE, Trans on Power Apparatus and Systems, 90, 3, pp.1065-1071 (1971).

(23) N.H. Malik, A.H. Qureshi, Calculation of discharge inception voltages in SF6-N2 mixtures, IEEE, Trans. Elect. Insul., EI-14, 2, pp. 70-76 (1979).

(24) L.E. Kline, D.K. Davies, C.L. Chen, P.J. Chantry, Dielectric Properties for SF6 and SF6 mixtures predicted from basic data, J. Appl. Phys. 50, 11, pp. 6789-6796 (1979).

(25) X. Li, H. Zhao, S. Jia, Dielectric breakdown properties of SF6–N2 mixtures in the temperature range 300–3000 K, Journal of Physics D: Applied Physics, 45, 44, pp. 445202-445208 (2012).

(26) R.S. Sigmond, Simple approximate treatment of unipolar space-charge-dominated coronas: The Warburg law and saturation current, J. Appl. Phys. 53, 2 (1982).

(27) E.W. McDaniel, E.A. Mason, The mobility and diffusion of ions in gases, 1973, by John Wiley & Sons, Inc. N.Y. N°2 (1979).

(28) G. Hinojosa and J. Urquijo, Test of Blanc’s law for negative ion mobility in mixtures of SF6 with N2, O2 aid air, J. Phys D: Appl. Phys. 36, pp. 2510-2514 (2003).

(29) A. Chelouah, E. Marode, G. Hartmann, S. Achat, A new method for temperature evaluation in a nitrogen discharge, J. Phys. D: Appl. Phys., 27, pp. 940-945 (1994).

(30) H. Champain, G. Hartmann, M. Lalmas, A. Goldman, Spectroscopic study of high-pressure dc corona discharges in SF6, 11th Int. Con. of gas discharge and their applications, Tokyo, pp.152-155(1995).

(31) A. Lemzadmi, N. Bonifaci1, A. Denat, M. Nemamcha, Light emission from corona discharge in SF6 and SF6/N2 gas mixtures at high pressure, European. Physical. Journal. Appl. Phys. 33, pp. 213–219 (2006).

(32) A. Boudefel, A. Lemzadmi, A.Guerroui, A. Babouri, Corona discharge in sulfur hexafluoride-nitrogen gas mixture, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 60, 2, pp. 153–161 (2015).

(33) A. Lemzadmi, A. Guerroui, A. Denat, Onset corona discharge voltages in SF6-N2 gas mixtures at higher gas pressures, 4th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Istanbul Turkey, pp. 167-170 (2013).

Downloads

Published

01.07.2022

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

ARTIFICIAL NEURAL NETWORK PREDICTION PARAMETERS OF 10%SF6-90%N2 MIXTURE : n/a. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(2), 139-144. https://journal.iem.pub.ro/rrst-ee/article/view/172