• ABDESLEM KHELLOUFI DAC Laboratory, Electrical Engineering Department, University of Setif 1, 19000, Alger
  • BILAL SARI DAC Laboratory, Electrical Engineering Department, University of Setif 1, 19000, Alger
  • SEIF-EDDINE CHOUABA DAC Laboratory, Electrical Engineering Department, University of Setif 1, 19000, Alger


Power system stabilizer, H∞ approach, Single-machine system, Low-frequency oscillations


A robust H output feedback control approach is used to design power system stabilizers (PSS) for damping electrical power low-frequency oscillations over a wide range of operating conditions. Two H control schemes have been employed in the Single-Machine connected to an infinite bus (SMIB) system. The proposed stabilizers offer robust stability against different unknown loads, considered an external disturbance. The simulation results show good performance and stability enhancement. The effectiveness of the proposed approach is demonstrated by a comparative study with three other approaches: conventional PSS and robust power system stabilizers based on quantitative feedback theory (QFT).


(1) A. Sallam, O.P. Malik, Power system stability: modeling, analysis and control, The Institution of Engineering and Technology (2015).

(2) P. Kundur, N. J. Balu, M. G. Lauby, Power system stability and control, McGraw-hill New York (1994).

(3) A. Sil, T. Gangopadhyay, S. Paul, A. Maitra, Design of robust power system stabilizer using H∞ mixed sensitivity technique, 2009 International Conference on Power Systems (IEEE), Kharagpur, India (2009).

(4) P. Shrikant Rao, Indraneel Sen, Robust tuning of power system stabilizers using QFT, IEEE transactions on control systems technology, 7, 4, pp. 478-486 (1999).

(5) IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Std 421.5-2016 (Revision of IEEE Std 421.5-2005, pp. 1–207 (2016).

(6) H. Labdelaoui, F. Boudjema, D. Boukhetala, Multiobjective optimal design of dual-input power system stabilizer using genetic algorithms, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 62, 1, pp. 93–97 (2017).

(7) E. L. Miotto, P. B. de Araujo, E. de Vargas Fortes, B. R. Gamino, L. F. B.Martins, Coordinated tuning of the parameters of PSS and POD controllers using bioinspired algorithms, IEEE Transactions on Industry Applications 54, 4, pp. 3845–3857 (2018).

(8) G. Shahgholian, A. Mohavedi, Coordinated design of thyristor-controlled series capacitor and power system stabilizer controllers using velocity update relaxation particle swarm optimization for two machine power system stability, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 59, pp. 291–301 (2014).

(9) S. Abd Elazim, E. Ali, Optimal power system stabilizers design via cuckoo search algorithm, International Journal of Electrical Power & Energy Systems 75, pp. 99–107 (2016).

(10) A.N. Sabo, I. Abdul Wahab, M.L. Othman, M.Z.A. Mohd Jaffar, H. Beiranvand, Optimal design of power system stabilizer for multi-machine power system using farmland fertility algorithm, International Transactions on Electrical Energy Systems (2020).

(11) M. Rahmatian, S. Seyedtabaii, Multi-machine optimal power system stabilizers design based on system stability and nonlinearity indices using hyper-spherical search method, International Journal of Electrical Power & Energy Systems 105, pp. 729–740 (2019).

(12) A. Mourad, G. Keltoum, Power system stabilizer based on terminal sliding mode control, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 62, 1, pp. 98–102 (2017).

(13) G. Zhang, W. Hu, D. Cao, Q. Huang, J. Yi, Z. Chen, F. Blaabjerg, Deep reinforcement learning-based approach for proportional resonance power system stabilizer to prevent ultra-low-frequency oscillations, IEEE Transactions on Smart Grid, 11, 6, pp. 5260–5272 (2020).

(14) S. Chen, O. Malik, H∞ optimization-based power system stabilizer design, IEEE Proceedings-Generation, Transmission and Distribution, 142, 2, pp. 179–184 (1995).

(15) P.S. Rao, I. Sen, Robust pole placement stabilizer design using linear matrix inequalities, IEEE Transactions on Power Systems, 15, 1, pp. 313–319 (2000).

(16) G. Rigatos, P. Siano, A. Melkikh, N. Zervos, A nonlinear H-infinity control approach to stabilization of distributed synchronous generators, IEEE Systems Journal, 12, 3, pp. 2654–2663 (2017).

(17) R. Chen, Y. Zhang, Coordinated control of power system stabilizers and HVDC damping controller using decentralized µ-synthesis, 2006 International Conference on Power System Technology (IEEE), Chongqing, China (2006).

(18) P. Sauer, M. Pai, J. Chow, Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox, Wiley & Sons, Inc. (2017).

(19) S. Gerwig, B. Sari, F. Garin, C. Canudas-de-Wit, Controller for Hydroelectric Group, USA Patent No. US 10,505,480 B2, 2019.

(20) B. Sari, M. F. Benkhoris, J.C. Le Claire, B. Rabhi, Robust H∞ output feedback control design applied to uninterruptible power supplies, 2012 International Symposium on Industrial Electronics (IEEE), Hangzhou, China (2012).

(21) F.P. Demello, C. Concordia, Concepts of synchronous machine stability as affected by excitation control, IEEE Transactions on power apparatus and systems, 88, 4, pp. 316–329 (1969).






Automatique et ordinateurs / Automation and Computer Sciences