CONTINUOUS SLIDING MODE APPROACH FOR A SELF-LIFT LUO CONVERTER VIA HIGH-ORDER SWITCHING MANIFOLD
Keywords:
Power converter, Control design, Equivalent control techniqueAbstract
A sliding mode duty ratio control is proposed for control of a positive output self-lift Luo converter. The conventional discontinuous sliding mode current method has been commonly used for switching dc/dc converters as it offers several benefits such as robust performance against operating point variations and easy implementation. However, this control strategy suffers from the chattering phenomenon, due to its non-constant switching frequency. It makes the design of input and output filters more difficult and also, increases strongly electromagnetic interface (EMI) problem and inductor saturation possibility. To overcome the mentioned problems, this paper suggests a continuous sliding mode current control scheme based on a double-integral sliding surface. Contrary to the traditional controller, the proposed method can indirectly enforce the defined sliding variable to converge zero. The developed control technique provides not only the fixed switching frequency without chattering but also zero steady-state error and fast response. The modified sliding mode approach is applied to a positive output self-lift Luo converter in continuous conduction mode. The general control law of the proposed structure is derived using the equivalent control concept and the detailed stability of the closed-loop system is investigated using sliding mode theory and small-signal analysis. Moreover, practical results are provided to demonstrate the superior performance of the suggested sliding mode controller as compared with the existing methods.
References
B. Anton, A. Florescu, L. A. Perisoara, A. Vasile, R. Constanescu, S. G. Rosu, Methods of maximizing power efficiency for hybrid vehicles, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 64, 1, pp. 57–62 (2019).
A. Goudarzian, Design, analysis and control of a quasi-resonant Luo converter with a high voltage gain, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 64, 3, pp. 267–274 (2019).
A. Goudarzian, A. Khosravi, H. A. Raeisi, Modeling and implementation of a new boost converter with the elimination of right-half-plan zero, Int. Trans. Electr. Energy Syst., 30, 9, e12476 (2020).
A. Goudarzian, A. Khosravi, H. A. Raeisi, Analysis of a step-up dc/dc converter with the capability of right-half plane zero cancellation, Renew. Energy., 157, pp. 1156–1170 (2020).
A. Goudarzian, A new technique for right half plane zero elimination from dynamics of a boost converter using magnetic coupling concept, Circuit World., (2021).
A. Goudarzian, A. Khosravi, H. A. Raeisi, Modeling, design, and control of a modified flyback converter with the ability of right-half-plane zero alleviation in continuous conduction mode, Eng. Sci. Technol., (2021).
A. Benaissa, B. Rabhi, M. F. Benkhoris, L. Zellouma, Linear quadratic controller for two-interleaved boost converter associated with PEMFC emulator, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 2, pp. 125–130 (2021).
T. Huynh Van, T. Le Van, T. M. Nguyen Thi, M. Q. Duong, G. N. Sava, Improving the output of DC-DC converter by phase shift full bridge applied to renewable energy, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 3, pp. 175–180 (2021).
A. Attou, A. Massoum, M. Chadli, Comparison study of two tracking methods for photovoltaic systems, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 60, 2, pp. 205–214 (2015).
H. Nasiri, A. Goudarzian, R. Pourbagher, S. Y. Derakhshandeh, PI and PWM sliding mode control of POESLL converter, IEEE Trans. Aerosp. Electron. Syst., 53, 5, pp. 2167–2177, (2017).
K. Kumar, S. Jeevananthan, Design and implementation of reduced-order sliding mode controller plus proportional double integral controller for negative output elementary super-lift Luo-converter. IET Power Electron., 6, 5, pp. 974–989 (2013).
B. Axelrod, Y. Berkovich, A. Ioinovici, Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc/dc PWM converters, IEEE Trans. Circuits Syst. I, Regul. Pap., 55, 2, 687–696 (2008).
A. Goudarzian, A. Khosravi, Application of dc/dc Cuk converter as a soft starter for battery chargers based on double-loop control strategy, Int. J. Circuit Theory Appl., 47, 5, 753–781 (2019).
F. L. Luo, H. Ye, Advanced dc/dc converters, CRC Press and Taylor & Francis Group, London, New York, 2006.
J. Liu, J. Hu, L. Xu, Dynamic modeling and analysis of Z source converter-derivation of AC small-signal model and design-oriented analysis. IEEE Trans. Power Electron., 22, 5, pp. 1786–1796 (2007).
D. Maksimovic, R. Zane, Small-signal discrete-time modeling of digitally controlled PWM converters, IEEE Trans. Power Electron., 22, 6, pp. 2552–2556 (2007).
M. Shirazi, R. Zane, D. Maksimovic, An auto-tuning digital controller for dc/dc power converters based on online frequency response measurement, IEEE Trans. Power Electron., 24, 11, pp. 2578–2588 (2009).
S. M. Rakhtala, E. S. Roudbari, Fuzzy PID control of a stand-alone system based on PEM fuel cell. Int. J. Electr. Power Energy Syst., 78, pp. 576–590 (2016).
A. Mouradi, G. Keltoum, Power system stabilizer based on terminal sliding mode control, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 62, 1, pp. 98–102 (2017).
W. Qi, S. Li, S. Tan, S. Hui, Parabolic-modulated sliding mode voltage control of buck converter, IEEE Trans. Ind. Electron., 65, 1, pp. 844–954 (2018).
A. Goudarzian, A. Khosravi, N. R. Abjadi, Sliding mode current control of a NOCULL converter based on hysteresis modulation method in a wide range of operating conditions, ISA Trans. Elsevier J., 85, pp. 214–225 (2019).
A. Goudarzian, A. Khosravi, H. A. Raeisi, Optimized sliding mode current controller for power converters with non-minimum phase nature. J. Frankl. Inst. Elsevier. J., 356, 15, pp. 8569–8594 (2019).
V. Acary, B. Brogliato, Y. V. Orlov, Chattering-free digital sliding mode control with state observer and disturbance rejection, IEEE Trans. Autom. Control., 57, 5, pp. 1087–1101 (2012).
T. Gonzalez, J. A. Moreno, L. Fridman, Variable gain super twisting sliding mode control, IEEE Trans. Autom. Control., 57, 8, 2100–2105 (2012).
S. H. Chincholkar, C. Y. Chan, Design of fixed-frequency pulse-width modulation based sliding-mode controllers for the quadratic boost converter, IEEE Trans. Circuits Syst. II, Exp. Briefs., 64, 1, pp. 51–55 (2017).
E. Vidal-Idiarte, A. Marcos-Pastor, G. Garcia, A. Cid-Pastor, L. Martinez-Salamero, Discrete-time sliding-mode-based digital pulse width modulation control of a boost converter, IET Power Electron., 8, 5, pp. 708–714 (2015).
M. Gao, D. Wang, Y. Li, T. Yuan, Fixed frequency pulse-width modulation based integrated sliding mode controller for phase-shifted full-bridge converters, IEEE Access., 6, pp. 2181–2192 (2017).
International IOR Rectifier, IRFZ44N, www.datasheet.octopart.com/IRFZ44N-Inchange-Semiconductor-datasheet-15981338.pdf.
Unisonic Technologies, MBR20150C, www.datasheet39.com/PDF/952071/MBR20150C-datasheet.html.
Allegro MicroSystems, ACS712, www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf.
Fairchild Semiconductor, LF351, www.mouser.com/datasheet/2/308/LF351-1192635.pdf.
Toshiba, TLP250, www.datasheetspdf.com/pdf-file/318802/ToshibaSemiconductor/TLP250/1.
Analog Devices, 10 MHz, Four-Quadrant Multiplier/Divider AD734, www.analog.com/media/en/technical-documentation/data-sheets/AD734.pdf