NUMERICAL THERMAL FIELD ANALYSIS IN REDUNDANT ELECTRIC MOTORS

Authors

  • IOANA IONICĂ ICPE S.A. / Universitatea Politehnica din București, Şcoala Doctorală de Inginerie Electrică
  • ALEXANDRU M. MOREGA Universitatea Naţională de Ştiinţă şi Tehnologie POLITEHNICA Bucureşti, România
  • CRISTIAN BOBOC ICPE S.A., București, România

DOI:

https://doi.org/10.36801/

Keywords:

Limited angle torque motor, Numerical analysis , Finite element (FEM)

Abstract

In this paper, we propose to analyze the heat transfer of a torque motor with a limited angle under special space conditions. Three-dimensional models will be used, and two current values will be considered in numerical analysis. Variants in which the boundary conditions will consider different values of the emissivity of engine surfaces will also be considered. Inside the stator and rotor subassemblies of the motor, heat transfer will be carried out by conduction and radiation between the motor and the ambient environment. Using numerical analysis, it will be possible to determine the time during which the temperature in the winding reaches the maximum allowable value for the limited angle torque motor under the mentioned conditions.

Author Biographies

  • ALEXANDRU M. MOREGA, Universitatea Naţională de Ştiinţă şi Tehnologie POLITEHNICA Bucureşti, România

    UNSTPB, Profesor

  • CRISTIAN BOBOC, ICPE S.A., București, România

    ICPE, Manager MESSICO

References

(1) Stoia D., “Motoare de curent continuu excitate cu magneți permanenți”, Editura Tehnică, București, 1983.

(2) AXYS Catalogue, Brushless DC Motors, 2002.

(3) Moog Catalogue, Direct Drive Brushless DC Torque Motors, 2013.

(4) Precilec Catalogue, Permanent Magnet generators and motors, 2013.

(5) Bental Motion Systems, “Brushless Motors”, 2013.

(6) P.R. Upadhyay, K.R. Rajagopal and B.P. Singh, "Computer aided design of an axial-field permanent magnet brushless dc motor for an electric vehicle", Journal of Applied Physics, vol.93, no.10, pp.8689,8691, May 2003.

(7) P.R. Upadhyay and K. R. Rajagopal, "FE Analysis and Computer-Aided Design of a Sandwiched Axial-Flux Permanent Magnet Brushless DC Motor," IEEE Transactions on Magnetics, vol.42, no.10, pp.3401,3403, Oct. 2006.

(8) I. Ionică, „Modele numerice și experimentale de câmp electromagnetic și transfer de căldură în mașini electrice speciale”, Teză de doctorat, Septembrie 2020.

(9) P.R. Upadhyay and K.R. Rajagopal, "FE analysis and CAD of radial-flux surface mounted permanent magnet brushless DC motors", Digests of the IEEE International Magnetics Conference -INTERMAG Asia 2005-, pp.729-730, 4-8 April 2005.

(10) ***Icpe Catalogue, Special Electric Machines, 2019.

(11) R. Obreja, I.R. Edu, "Limited Angle Torque Motors having high torque density, used in accurate Drive Systems", Acta Polytechnica, Vol. 51, No. 5/2011, pp.75-83.

(12) Andrei M.I., Modreanu N.M., “Numeric Modelling of a Two-Channel Limited Angle Torque Motor”, in EEA ‒ Electrotehnică, Electronică, Automatică, Editura. ELECTRA, Vol. 62, Nr. 1, 2014 pp. 26-31.

(13) Măgureanu R., Mașini electrice speciale pentru sisteme automate, Editura Tehnică, București, 1981.

(14) Andrei M.I., Modreanu M., Ghițulescu L., “ACES Methodology for a DC Limited Angle Torque Motor”, in Revue roumaine des sciences techniques, Série Électrotechnique et Énergétique.

(15) ***Comsol Multiphysics documentation: http://www.comsol.com/

(16) *** “Componente electromecanice pentru sisteme high tech direct drive realizate cu linii tehnologice flexibile – HTDD”, Raport tehnic, etapa 1.

(17) *** “Componente electromecanice pentru sisteme high tech direct drive realizate cu linii tehnologice flexibile ̶ HTDD”, Raport tehnic, etapa 2.

(18) M.I. Andrei, N.M. Modreanu, M. Gutu, L. Ghitulescu, "Sistem de măsură asistat de calculator pentru caracterizarea motoarelor de cuplu cu unghi limitat", EEA - Electrotehnică, Electronică, Automatică, Editura. ELECTRA, Vol. 62, No. 3, Jun-Sep. 2014 pp. 11-17.

(19) A.M. Morega, 7 - Principles of Heat Transfer, Editor(s): Dan B. Marghitu, In Academic Press Series in Engineering, Mechanical Engineer's Handbook, Academic Press, 2001, Pages 445-557, ISBN 9780124713703, https://doi.org/10.1016/B978-012471370-3/50008-5.

(20) A. Boglietti, A. Cavagnino, D.A. Staton, “Thermal Analysis of TEFC Induction Motors”, Proc. of IEEE International Conference PEDS 2003, Singapore, 2003.

(21) A. Boglietti, A. Cavagnino, M. Lazzari, M. Pastorelli, “A simplified thermal model for variable-speed self-cooled industrial induction motor”, IEEE Transactions on Industry Application, Vol. 39, Issue 4, pp. 945 – 952, 2003.

(22) A. Cassat, C. Espanet, N. Wavre, “BLDC motor stator and rotor iron losses and thermal behavior based on lumped schemes and 3-D FEM analysis”, IEEE Transactions on Industry Application, Vol. 39, Issue 5, pp. 1314 – 1322, 2003.

(23) E. Lebenhaft, “Field Evaluation of Slip-Dependent Thermal Model for Motors with High-Inertia Starting”, Petroleum and Chemical Industry Technical Conference, 2007. PCIC '07, pp. 1 – 5, 2007.

(24) H.P. Liu, V. Lelos, C.S. Hearn, “Transient 3-D thermal analysis for an air-cooled induction motor”, Proc. of IEEE International Conference IEMDC 2005, pp. 417 – 420, 2005.

(25) R. Bernard, R. Glises, D. Chamagne, “3D thermal study of a low power electric motor with Flux3D”, Flux-Magazine, No. 37, pp. 10 – 11, 2001.

Published

19.02.2024

Issue

Section

ELECTRIC MACHINES

How to Cite

NUMERICAL THERMAL FIELD ANALYSIS IN REDUNDANT ELECTRIC MOTORS. (2024). ELECTRICAL MACHINES, MATERIALS AND DRIVES — PRESENT AND TRENDS, 19(1), 23-31. https://doi.org/10.36801/