THE ANALYSIS OF THE THREE-PHASE INDUCTION MOTOR WITH DEEP ROTOR BARS THROUGH NUMERICAL SIMULATIONS UTILIZING A MODIFIED MATHEMATICAL MODEL

Authors

  • MIHAI IORDACHE Universitatea Politehnica din Bucuresti
  • SORIN DELEANU Northern Alberta Institute of Technology, Edmonton
  • NECULAI GALAN Universitatea Politehnica din Bucuresti

DOI:

https://doi.org/10.36801/

Keywords:

Three-phase induction motor, Deep rotor bars, Numerical simulations, Modified mathematical model

Abstract

The three-phase induction machine mathematical model presented in the paper is adequate for applying to the deep rotor bars case. The rotor resistance and its leakage inductivity depend upon the rotor currents frequency because of the skin effect. Following the previous considerations, one developed slip-dependent analytical expressions of the rotor circuit resistance, respectively rotor circuit leakage reactance. A modified space phasor-based mathematical model of the deep bar induction motor is tested through simulations to assess the motor’s characteristics. The results follow the literature.

References

(1) P. Vas, Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines. London, U.K.: Clarendon, 1993.

(2) J. K. Seok and S. K. Sul, “Induction motor parameter tuning for high-performance drives,” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 35–41, Jan./Feb. 2001.

(3) J. K. Seok, D. W. Chung, S. H. Song, S. K. Sul, B. K. Kwon, G. W. Park, W. C. Shin, E. S. Cho, J. S. Lee, and C. H. Choi, “A new approach to advanced cold mill drive systems,” in Conf. Rec. IEEE IAS Annual Meeting, pp. 2125–2130, 1997.

(4) M. A. Valenzuela, J. M. Bentley, and R. D. Lorenz, “Sensorless tension control in paper machines,”IEEE Trans. Ind. Appl., vol. 39, no. 2, p. 294–304, 2003.

(5) J. R. Willis, G. J. Brock, and J. S. Edmonds, “Derivation of induction motor models from standstill frequency response tests,” IEEE Trans. Energy Convers., vol. 4, no. 4, pp. 608–613, 1989.

(6) S.I. Moon and A. Keyhani, “Estimation of induction machine parameters from standstill time-domain data,” IEEE Trans. Ind. Appl., vol. 30, no. 6, pp. 1609–1615, 1994.

(7) R. W. A. A. De Doncker, “Field-oriented controller with rotor deep bar compensation circuits,” IEEE Trans. Ind. App., vol. 28, pp.1062–1071, 1992.

(8) Jul-Ki Seok, Seung-Ki Sul, “Pseudorotor-Flux-Oriented Control of an Induction Machine for Deep-Bar-Effect Compensation,” IEEE Trans. on Ind. Appl. , vol: 34 , no.3 , p: 429 – 434, 1998.

(9) R. C. Healey, S. Williamson, and A. C. Smith, “Improved cage rotor models for vector-controlled induction motors,” IEEE Trans. Ind. Appl., vol. 31, pp. 812–822, 1995.

(10) J.M Correea-Guimaraes, J.V. Bernardes, E. Hermeto, and E. da Silva, “Parameter Determination of Asynchronous Machines from Manufacturer Data Sheet,” IEEE Trans. Ener. Conv., vol. 29, no. 3, pp. 689 – 697, 2014.

(11) P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery. New York, NY, USA: IEEE Press, 1995.

(12) M. Kostenko and L. Piotrovsky, Electrical Machines—Part 2. Moscow, USSR: Mir Pub., 1977.

(13) Test Procedure for Polyphase Induction Motors and Generators. IEEE Standard 112, 2004.

(14) Rotating Electrical Machines. Part 2-1: Standard Methods for Determining Losses and Efficiency From Tests, IEC Standard 60034-2-1, 2007.

(15) M. S. Zaky, M. M. Khater, S. S. Shokralla, and H. A. Yasin, “Wide-speed-range estimation with online parameter identification schemes of sensor-less induction motor drives,” IEEE Trans. IE, vol. 56, no. 5, pp. 1699–1707, 2009.

(16) M. Wlas, Z. Krzemin ski, and H. A. Toliyat, “Neural-network-based parameter estimations of induction motors,” IEEE Trans. IE, vol. 55, no. 4, pp. 1783–1794, 2008.

(17) GHEORGHIU I.S., FRANSUA A., Tratat de maşini electrice, Vol.I – Maşina de curent continue, 1968. Vol. II – Transformatoare, 1970. Vol. III – Maşini asincrone, 1971. Vol. IV – Maşini sincrone, 1972. Editura Academiei R.S.R. Bucureşti. (In Romanian)

(18) DORDEA, T. Maşini electrice, vol. I (2002) – Teorie, vol. II (2003) – Proiectare, vol. III (2003)–Construcţie, Editura ASAB, 2002 – 2003, Bucureşti. (In Romanian)

(19) BOLDEA, I. Parametrii maşinilor electrice, Editura Academiei Române, Bucureşti, 1991. (In Romanian)

(20) CÂMPEANU, A. Maşini electrice. Probleme fundamentale, speciale şi de funcţionare optimală. Editura Scrisul Românesc, Craiova, 1988. (In Romanian)

(21) MIHALACHE, M. Maşini electrice, volumul 1 –Transformatoare electrice, 1994; volumul 2 – Maşini electrice rotative, 1996, Universitatea Politehnica din Bucureşti. (In Romanian)

(22) GALAN, N. Masini electrice, Editura Academiei Romane, Bucuresti, 2011. (In Romanian)

(23) C. Grantham and D. J. McKinnon, “Rapid parameter determination for induction motor analysis and control,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1014–1020, Jul./Aug. 2003.

(24) P. Pillay, R. Nolan, and T. Haque, “Application of genetic algorithms to rotor parameter determination from transient torque calculations,” IEEE Trans. Ind. Appl., vol. 33, no. 5, pp. 1273–1282, Sep./Oct. 1997.

(25) V. P. Sakthivel, R. Bhuvaneswari, and S. Subramanian, “Multi-objective parameter estimation of induction motor using particle swarm optimization,” Eng. Appl. Art. Int., vol. 23, pp. 302–312, 2010.

Downloads

Published

10.02.2021

Issue

Section

APME - general

How to Cite

THE ANALYSIS OF THE THREE-PHASE INDUCTION MOTOR WITH DEEP ROTOR BARS THROUGH NUMERICAL SIMULATIONS UTILIZING A MODIFIED MATHEMATICAL MODEL. (2021). ELECTRICAL MACHINES, MATERIALS AND DRIVES — PRESENT AND TRENDS, 16(1), 150-160. https://doi.org/10.36801/