EXPERIMENTAL STUDY TO GAUGE THE INFLUENCE OF TILT ANGLE ON PHOTOVOLTAIC PANEL PERFORMANCE
DOI:
https://doi.org/10.59277/RRST-EE.2025.1.24Keywords:
Tilt Angle, Photovoltaic (PV) panel, Renewable energy, Power loss, Seasonal changeAbstract
Solar energy is the most significant form of renewable energy, and its efficiency is affected by the angle between the photovoltaic module and the sun. Research has been conducted to enhance its sustainability, cost-effectiveness, and efficiency. The power density of a PV module is highest when it is perpendicular to the sun's beam. Still, because the sun's angle with a fixed panel constantly changes, the power density on a fixed PV module is lower than that of the incident sunlight. Additionally, the earth's orbit and the changing seasons impact irradiance and reduce the output of fixed tilt angle panels. This study aims to estimate the power losses due to fixed PV panels using an analytical model and experimental data and compare the calculated output with data from solar panel installations. The results of this research can help overcome the drawbacks of fixed tilt angles, improve efficiency, increase solar energy production, and reduce dependence on environmentally harmful non-renewable energy sources.
References
(1) T.Y. Khan, M.E.M. Soudagar, M. Kanchan, A. Afzal, N.R. Banapurmath, N. Akram, K. Shahapurkar, Optimum location and influence of tilt angle on performance of solar PV panels, J. Therm. Anal. Calorim. 141, pp. 511–532 (2020).
(2) ***www.sws.bom.gov.au/Educational/2/1/12" [Accessed 20 November 2023].
(3) R. Duirasamy, V. Thiyagarajan, A novel fault-tolerant generalized symmetrical topology for renewable energy and electric vehicle applications, Rev. Roum. Sci. Tech. – Ser. Électrotechn. Énerg. 69, pp. 383–388 (2024).
(4) V.G. Dogaru, F.D. Dogaru, V. Năvrăpescu, L. M. Constantinescu, From the photovoltaic effect to a low voltage photovoltaic grid challenge – a review, Rev. Roum. Sci. Tech. – Ser. Électrotechn. Énerg. 69, pp. 263–268 (2024).
(5) A. Yahiaoui, A. Tlemçani, An efficient study of PV/wind/battery/electrolyzer/H2-tank/FC for a remote area electrification, Rev. Roum. Sci. Tech. – Ser. Électrotechn. Énerg. 69, pp. 129–134 (2024).
(6) M. Kaouane, A. Boukhelifa, Identification of dysfunctional modules within a photovoltaic generator, Rev. Roum. Sci. Tech. – Ser. Électrotechn. Énerg. 67, pp. 301–305 (2022).
(7) R. Singh, R. Banerjee, Impact of solar panel orientation on large scale rooftop solar photovoltaic scenario for Mumbai, Energy Procedia 90, pp. 401–411 (2016).
(8) S. Kivrak, M. Gunduzalp, F. Dincer, Theoretical and experimental performance investigation of a two-axis solar tracker under the climatic condition of Denizli, Turkey, Przegląd Elektrotechniczny 88, pp. 332–336 (2012).
(9) S. Faryal, A. Ali, A.H. Memon, Lifespan and decomposition effects of 1st and 3rd generation silicon solar cell with respect to environment and health, Sir Syed Univ. Res. J. Eng. Technol., 9, 1 (2019).
(10) M. Farahmand, M.E. Nazari, S. Shamlou, M. Shafie-khah, The simultaneous impacts of seasonal weather and solar conditions on PV panels electrical characteristics, Energies, 14, 845 (2021).
(11) N. Ogueke, F. Abam, K. Nwaigwe, O. Anthony, P. Ogwuoke, E. Anyanwu, The effect of seasonal variation and angle of inclination on the performances of photovoltaic panels in South Eastern Nigeria, Res. J. Appl. Sci. Eng. Technol. 5, pp. 794–800 (2013).
(12) J. Crook, L. Jones, P. Forster, R. Crook, Climate change impacts on future photovoltaic and concentrated solar power energy output, Energy Environ. Sci. 4, pp. 3101–3109 (2011).
(13) T. Markvart, Solar Electricity (John Wiley & Sons Ltd., pp. 23–43 (1994).
(14) S. Silvestre, A. Chouder, Analysis of power losses in PV systems, presented at the 23rd European Photovoltaic Solar Energy Conference and Exhibition (2008).
(15) S. Abdulaziz, Effect of solar radiation on photovoltaic cell, 113 (2017).
(16) J. Alanbary, Design and construction of a tracking device for solar electrical systems, J. Sci. Eng. Res., 5, pp. 225–236 (2018).
(17) H. Nakamura, T. Yamada, T. Sugiura, K. Sakuta, K. Kurokawa, Data analysis on solar irradiance and performance characteristics of solar modules with a test facility of various tilted angles and directions, Sol. Energy Mater. Sol. Cells, 67, pp. 591–600 (2001).
(18) H.M.S. Hussein, G.E. Ahmad, H.H. El-Ghetany, Performance evaluation of photovoltaic modules at different tilt angles and orientations, Energy Convers. Manag. 45, pp. 2441–2452 (2004).
(19) M. Kacira, M. Simsek, Y. Babur, S. Demirkol, Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey, Renew. Energy 29, pp. 1265–1275 (2004).
(20) T.P. Chang, Output energy of a photovoltaic module mounted on a single-axis tracking system, Appl. Energy 86, 2071–2078 (2009).
(21) E.D. Mehleri, P.L. Zervas, H. Sarimveis, J.A. Palyvos, N.C. Markatos, Determination of the optimal tilt angle and orientation for solar photovoltaic arrays, Renew. Energy, 35, 2468–2475 (2010).
(22) Y.P. Chang, An ant direction hybrid differential evolution algorithm in determining the tilt angle for photovoltaic modules, Expert Syst. Appl., 37, 5415–5422 (2010).
(23) H. Wada, F. Yamamoto, K. Ueta, T. Yamaguchi, Generation characteristics of 100 kW PV system with various tilt angle and direction arrays, Sol. Energy Mater. Sol. Cells 95, 382–385 (2011).
(24) M. Benghanem, Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia, Appl. Energy, 88, pp. 1427–1433 (2011).
(25) W.D. Lubitz, Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels, Appl. Energy, 88, pp. 1710–1719 (2011).
(26) I.H. Rowlands, B.P. Kemery, I. Beausoleil-Morrison, Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study, Energy Policy, 39, pp. 1397–1409 (2011).
(27) K. Bakirci, General models for optimum tilt angles of solar panels: Turkey case study, Renew. Sustain. Energy Rev.. 16, pp. 6149–6159 (2012).
(28) R. Yan, T.K. Saha, P. Meredith, S. Goodwin, Analysis of yearlong performance of differently tilted photovoltaic systems in Brisbane, Australia, Energy Convers. Manag,. 74, pp. 102–108 (2013).
(29) E.A. Handoyo, D. Ichsani, The optimal tilt angle of a solar collector, Energy Procedia, 32, pp. 166–175 (2013).
(30) S.B. Jeyaprabha, A.I. Selvakumar, Optimal sizing of photovoltaic/battery/diesel-based hybrid system and optimal tilting of sa olar array using the artificial intelligence for remote houses in India, Energy Build., 96, pp. pp. 40–52 (2015).
(31) A A. Babatunde, S. Abbasoglu, M. Senol, Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants, Renew. Sustain. Energy Rev., 90, pp. 1017–1026 (2018).
(32) M.A.A. Mamun, M. Hasanuzzaman, J. Selvaraj, R. Nasrin, Numerical and experimental investigation of the effect of tilt angle on the performance of PV systems, 30 (2018).
(33) A. Ullah, H. Imran, Z. Maqsood, N.Z. Butt, Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan, Renew. Energy, 139, pp. 830–843 (2019).
(34) J. Modarresi, H. Hosseinnia, Worldwide daily optimum tilt angle model to obtain maximum solar energy, IETE J. Res., 69, 1, pp. 1–9 (2020).
(35) D. L. King, M. A. Quintana, J. A. Kratochvil, D. E. Ellibee, B.R. Hansen, Photovoltaic module performance and durability following long-term field exposure, Sandia National Laboratories, Albuquerque, NM 87185-0752.
(36) X. Feng, X. Qing, C.Y. Chung, H. Qiao, X. Wang, X. Zhao, A simple parameter estimation approach to modeling of photovoltaic modules based on datasheet values, J. Sol. Energy Eng., 138, 5, (2016).
(37) J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, 2nd ed. (Wiley, New York, NY, 1991).
(38) Y. Tahir, M.F. Khan, A.H. Memon, A simple approach to block incidence of ultraviolet radiations on PV Module, 3rd International Conference on Emerging Trends in Engineering, Sciences, and Technology (ICEEST), Karachi, Pakistan, pp. 1–3 (2018).
(39) Y. Tahir, M. F. Khan, M. Faizan, A. H. Memon, Analytical model for blocking ultraviolet radiation on photovoltaic module, Rev. Roum. Sci. Tech.—Sér. Électrotech. Énerg., 67, 2, pp. 207–212 (2022).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.